The art of cryptography, summer 2013
 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen
Dr. Daniel Loebenberger

Algorithm 1. Basis reduction.
Input: Linearly independent row vectors $a_{1}, \ldots, a_{\ell} \in \mathbb{Z}^{n}$.
Output: A reduced basis b_{1}, \ldots, b_{ℓ} of the lattice

$$
L=\sum_{1 \leq i \leq \ell} \mathbb{Z} a_{i} \subseteq \mathbb{Z}^{n}
$$

1. For $i=1, \ldots, \ell$ do $b_{i} \leftarrow a_{i}$.
2. Compute the GSO $B^{*} \in \mathbb{Q}^{\ell \times n}, M \in \mathbb{Q}^{\ell \times \ell}$,
3. $i \leftarrow 2$.
4. While $i \leq \ell$ do $5-10$
5. For $j=i-1, i-2, \ldots, 1$ do step 6-6
6. $b_{i} \leftarrow b_{i}-\left\lceil\mu_{i j}\right\rfloor b_{j}, \quad$ update the GSO, $\quad\{$ replacement step $\}$
7. If $i>1$ and $\left\|b_{i-1}^{*}\right\|^{2}>2\left\|b_{i}^{*}\right\|^{2}$ then
8. exchange b_{i-1} and b_{i} and update the GSO, $\{$ exchange step $\}$
9. $i \leftarrow i-1$.
10. Else $i \leftarrow i+1$.
11. Return b_{1}, \ldots, b_{ℓ}.

Theorem 2. Algorithm 1 correctly computes a reduced basis of $L \subseteq \mathbb{Z}^{n}$ and runs in polynomial time. It uses $O\left(n^{4} m\right)$ arithmetic operations on integers whose bit length is $O(n m)$, if the norm of each given generator for L has bit length at most m.

Lemma 3. i. We consider one execution of step 6, for i, j with $1 \leq j<i \leq \ell$. Let $B, B^{*} \in \mathbb{Q}^{\ell \times n}, M \in \mathbb{Q}^{\ell \times \ell}$ and $C, C^{*} \in \mathbb{Q}^{\ell \times n}, N \in \mathbb{Q}^{\ell \times \ell}$ be the matrices of the $b_{k}, b_{k}^{*}, \mu_{k h}$ before and after the replacement, respectively, and $E=\left(e_{k h}\right) \in \mathbb{Z}^{\ell \times \ell}$ the matrix which has $e_{k k}=1$ for all k, $e_{i j}=-\left\lceil\mu_{i j}\right\rfloor$, and $e_{k h}=0$ otherwise. Then

$$
C=E B, C^{*}=B^{*} \text { and } N=E M
$$

ii. The following invariant holds before each execution of step 6:

$$
\left|\mu_{i h}\right| \leq \frac{1}{2} \text { for } j<h<i
$$

iii. The Gram-Schmidt orthogonal basis $b_{1}^{*}, \ldots, b_{\ell}^{*}$ does not change in step 6, and after the loop in steps 5-6 we have $\left|\mu_{i h}\right| \leq 1 / 2$ for $1 \leq h<i$.

$$
\left(\begin{array}{cccccccc}
1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
\cdot & 1 & \ddots & & & & & \vdots \\
\cdot & \cdot & 1 & \ddots & & & & \vdots \\
\cdot & \cdot & \cdot & 1 & \ddots & & & \vdots \\
\cdot & \cdot & \cdot & \cdot & 1 & \ddots & & \vdots \\
\circ & \circ & \bullet & \cdot & \cdot & 1 & \ddots & \vdots \\
* & * & * & * & * & * & 1 & 0 \\
* & * & * & * & * & * & * & 1
\end{array}\right)
$$

Figure: The effect of one replacement step on the $\mu_{i j}$.

Lemma 4. Suppose that b_{i-1} and b_{i} are exchanged in step 8, and denote by c_{1}, \ldots, c_{ℓ} and $c_{1}^{*}, \ldots, c_{\ell}^{*}$ the values of the vectors and their Gram-Schmidt orthogonal basis after the exchange, respectively. Then
i. $c_{k}^{*}=b_{k}^{*}$ for $k \in\{1, \ldots, \ell\} \backslash\{i-1, i\}$,
ii. $\left\|c_{i-1}^{*}\right\|^{2}<\frac{3}{4}\left\|b_{i-1}^{*}\right\|^{2}$,
iii. $\left\|c_{i}^{*}\right\| \leq\left\|b_{i-1}^{*}\right\|$.

Lemma 5. At the beginning of each iteration of the loop in steps 4-10, the following invariants hold:

$$
\left|\mu_{k h}\right| \leq \frac{1}{2} \text { for } 1 \leq h<k<i, \quad\left\|b_{k-1}^{*}\right\|^{2} \leq 2\left\|b_{k}^{*}\right\|^{2} \text { for } 1 \leq k<i
$$

At any stage in the algorithm and for $1 \leq k \leq \ell$, we consider the matrix

$$
B_{k}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right) \in \mathbb{Z}^{k \times n}
$$

comprising the first k vectors, their Gram matrix
$B_{k} \cdot B_{k}^{T}=\left(b_{j} \star b_{h}\right)_{1 \leq j, h \leq k} \in \mathbb{Z}^{k \times k}$, and the Gram determinant $d_{k}=\operatorname{det}\left(B_{k} \cdot B_{k}^{T}\right) \in \mathbb{Z}$. For convenience, we let $d_{0}=1$.

Lemma 6. For $1 \leq k \leq \ell$, we have $d_{k}=\prod_{1 \leq h \leq k}\left\|b_{h}^{*}\right\|^{2}>0$.

Lemma 7. i. In steps 5-6, none of the d_{k} changes.
ii. If b_{i-1} and b_{i} are exchanged in step $7-10$ and d_{k}^{*} denotes the new value of d_{k}, for any k, then $d_{k}^{*}=d_{k}$ for $k \neq i-1$ and $d_{i-1}^{*} \leq \frac{3}{4} d_{i-1}$.

step	$\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$	$\left(\begin{array}{ll}\mu_{21} & \\ \mu_{31} & \mu_{32}\end{array}\right)$	$\left(\begin{array}{l}\left\\|b_{1}^{*}\right\\|^{2} \\ \left\\|b_{2}^{*}\right\\|^{2} \\ \left\\|b_{3}^{*}\right\\|^{2}\end{array}\right)$	$\begin{gathered} d_{1}, d_{2} \\ D \end{gathered}$	action
4	$\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & 2 \\ 3 & 5 & 6\end{array}\right)$	$\left(\begin{array}{cc}\frac{1}{3} & \\ \frac{14}{3} & \frac{13}{14}\end{array}\right)$	$\left(\begin{array}{c}3 \\ \frac{14}{3} \\ \frac{9}{14}\end{array}\right)$	$\begin{gathered} 3,14 \\ 42 \end{gathered}$	rep (3, 2)
4	$\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & 2 \\ 4 & 5 & 4\end{array}\right)$	$\left(\begin{array}{cc}\frac{1}{3} & \\ \frac{13}{3} & \frac{-1}{14}\end{array}\right)$	$\left(\begin{array}{c}3 \\ \frac{14}{3} \\ \frac{9}{14}\end{array}\right)$	$\begin{gathered} 3,14 \\ 42 \end{gathered}$	rep $(3,1)$
5	$\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & 2 \\ 0 & 1 & 0\end{array}\right)$	$\left(\begin{array}{ll}\frac{1}{3} & \\ \frac{1}{3} & \frac{-1}{14}\end{array}\right)$	$\left(\begin{array}{c}3 \\ \frac{14}{3} \\ \frac{9}{14}\end{array}\right)$	$\begin{gathered} 3,14 \\ 42 \end{gathered}$	$\mathrm{ex}(3,2)$
5	$\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 2\end{array}\right)$	$\left(\begin{array}{ll}\frac{1}{3} & \\ \frac{1}{3} & \frac{-1}{2}\end{array}\right)$	$\left(\begin{array}{l}3 \\ \frac{2}{3} \\ \frac{9}{2}\end{array}\right)$	$\begin{gathered} 3,2 \\ 6 \end{gathered}$	$\mathrm{ex}(2,1)$
4	$\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & \\ 0 & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{l}1 \\ 2 \\ \frac{9}{2}\end{array}\right)$	$\begin{gathered} 1,2 \\ 2 \end{gathered}$	rep $(2,1)$
6	$\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 2\end{array}\right)$	$\left(\begin{array}{ll}0 & \\ 0 & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{l}1 \\ 2 \\ \frac{9}{2}\end{array}\right)$	$\begin{gathered} 1,2 \\ 2 \end{gathered}$	

Table: Trace of the basis reduction Algorithm 1 on the lattice $L=\mathbb{Z}(1,1,1)+\mathbb{Z}(-1,0,2)+\mathbb{Z}(3,5,6)$.

Corollary 8. Given linearly independent vectors $a_{1}, \ldots, a_{\ell} \in \mathbb{Z}^{n}$ whose norm has bit length at most m, the basis reduction algorithm Algorithm 1 computes a reduced basis b_{1}, \ldots, b_{ℓ} of $L=\sum_{1 \leq i \leq \ell} \mathbb{Z} a_{i}$. Furthermore, b_{1} is a "short" nonzero vector in L with

$$
\left\|b_{1}\right\| \leq 2^{(\ell-1) / 2} \lambda_{1}(L)=2^{(\ell-1) / 2} \min \{\|y\|: 0 \neq y \in L\} .
$$

It uses $O\left(n^{6} m^{3}\right)$ bit operations.

