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ALGORITHM 1. Basis reduction.

Input: Linearly independent row vectors ay,...,ay € Z™.
Output: A reduced basis b1, ..., by of the lattice
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Fori=1,...,¢ do b; < a;.
Compute the GSO B* € Q™ M € Q¢
14— 2.

While i < ¢ do 5-10

For j=¢—1,4—2,...,1 do step 6-6

b; <= b; — [1ij]bj, update the GSO, { replacement step }
If i > 1 and ||b}_,]|* > 2/|b]|* then

exchange b;_1 and b; and update the GSO, { exchange step }
14-1— 1.

Else i <— ¢+ 1.

Return by,...,by.

9/11



THEOREM 2. Algorithm 1 correctly computes a reduced basis of
L C Z™ and runs in polynomial time. It uses O(n*m) arithmetic
operations on integers whose bit length is O(nm), if the norm of
each given generator for L has bit length at most m.
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LEMMA 3. i. We consider one execution of step 6, for i, j with

1<j<i</{ Let B,B*c Q" M e Q" and

C,C* € Q" N € Q¥ be the matrices of the bie, by ikch,
before and after the replacement, respectively, and

E = (exp) € Z%* the matrix which has ey, = 1 for all k,
eij = —[pij], and ey = 0 otherwise. Then

C=EB,C*=B*and N = EM.

. The following invariant holds before each execution of step 6:

1
\,uih|§§ for j < h <.

The Gram-Schmidt orthogonal basis b7, ... ,b; does not
change in step 6, and after the loop in steps 5-6 we have
lpin| < 1/2 for 1 < h < i.
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Figure: The effect of one replacement step on the f;;.
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LEMMA 4. Suppose that b;_1 and b; are exchanged in step 8, and
denote by cy,...,c; and ci, ..., c; the values of the vectors and
their Gram-Schmidt orthogonal basis after the exchange,
respectively. Then

=0 forke{l,... .00\ {i—1,i},
2

’

i ey 12 < 216y

i el < 1165 [l
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LEMMA 5. At the beginning of each iteration of the loop in steps
4-10, the following invariants hold:

1
lkn| < 5 for 1< h <k <i, 11 11* < 2/b3]1* for 1 < k <i.
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At any stage in the algorithm and for 1 < k < ¢, we consider the

matrix
b1

b
comprising the first k vectors, their Gram matrix

By, - B;{ = (bj xbp)1<jn<k € Z**k and the Gram determinant
di, = det(By - B}') € Z. For convenience, we let dy = 1.

LEMMA 6. For1 <k </, we have dj, = H |51 > o.
1<h<k
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LEMMA 7. i. In steps 5—6, none of the d;, changes.

ii. Ifbi_1 and b; are exchanged in step 7-10 and dj, denotes the
new value of dy,, for any k, then d;, = dj, for k # ¢ — 1 and
diy < Jia.
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[lb711%

by
step by ( }L?l ] ) |b5 17 dlbdz action
by o les
111 1 3
3 ) 3,14
3 14
4 -1 0 2 (L 173) L 19 rep(3,2)
3 5 6 3 14 9
14
1 11 3
4 -1 0 2 ( ) u 3ﬁ14 rep(3,1)
13 -1 3 42
4 5 4 3 T 9
14
111 1 3
1 3,14
3 14 )
5 -1 0 2 (1 ;1> 2 12 ex(3,2)
0 10 3 14 9
14
3
Lo 1 ) 3,2
5 0 10 2 A ex(2,1)
1 =1 3 6
-1 0 2 3 T 9
2
1
0 10 1 1o
4 111 . 2 ) rep(2,1)
~10 2 0 3 9
2
1
0 10 L2
6 1 01 2
1 2
-1 0 2 3 9
2

Table: Trace of the basis reduction Algorithm 1 on the lattice

L=7(1,1,1) + Z(—1,0,2) + Z(3,5,6).
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COROLLARY 8. Given linearly independent vectors

ai,...,ap € Z"™ whose norm has bit length at most m, the basis
reduction algorithm Algorithm 1 computes a reduced basis
bi,...,bp of L =73,y Za;. Furthermore, by is a “short”

nonzero vector in L with
Ibe]| < 2¢7D720 (L) = 27D 2 min{|ly||: 0 £y € L}

It uses O(n®m3) bit operations.
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