The art of cryptography, summer 2013 Lattices and cryptography

> Prof. Dr. Joachim von zur Gathen Dr. Daniel Loebenberger

ALGORITHM 1. Basis reduction.

Input: Linearly independent row vectors $a_1, \ldots, a_\ell \in \mathbb{Z}^n$. Output: A reduced basis b_1, \ldots, b_ℓ of the lattice

$$L = \sum_{1 \le i \le \ell} \mathbb{Z}a_i \subseteq \mathbb{Z}^n.$$

1. For $i = 1, \ldots, \ell$ do $b_i \leftarrow a_i$. 2. Compute the GSO $B^* \in \mathbb{O}^{\ell \times n}$, $M \in \mathbb{O}^{\ell \times \ell}$, 3. $i \leftarrow 2$. 4. While $i < \ell$ do 5–10 5. For $i = i - 1, i - 2, \dots, 1$ do step 6-6 6. $b_i \leftarrow b_i - \lceil \mu_{ij} \mid b_j$, update the GSO, { replacement step } 7. If i > 1 and $||b_{i-1}^*||^2 > 2||b_i^*||^2$ then 8. exchange b_{i-1} and b_i and update the GSO, { exchange step } 9. $i \leftarrow i - 1$. 10. Else $i \leftarrow i + 1$.

11. Return $b_1, ..., b_\ell$.

THEOREM 2. Algorithm 1 correctly computes a reduced basis of $L \subseteq \mathbb{Z}^n$ and runs in polynomial time. It uses $O(n^4m)$ arithmetic operations on integers whose bit length is O(nm), if the norm of each given generator for L has bit length at most m.

LEMMA 3. i. We consider one execution of step 6, for
$$i, j$$
 with $1 \leq j < i \leq \ell$. Let $B, B^* \in \mathbb{Q}^{\ell \times n}, M \in \mathbb{Q}^{\ell \times \ell}$ and $C, C^* \in \mathbb{Q}^{\ell \times n}, N \in \mathbb{Q}^{\ell \times \ell}$ be the matrices of the b_k, b_k^*, μ_{kh} before and after the replacement, respectively, and $E = (e_{kh}) \in \mathbb{Z}^{\ell \times \ell}$ the matrix which has $e_{kk} = 1$ for all k , $e_{ij} = -\lceil \mu_{ij} \rceil$, and $e_{kh} = 0$ otherwise. Then

$$C = EB, C^* = B^*$$
 and $N = EM$.

ii. The following invariant holds before each execution of step 6:

$$|\mu_{ih}| \le \frac{1}{2}$$
 for $j < h < i$.

iii. The Gram-Schmidt orthogonal basis $b_1^*, \ldots, b_{\ell}^*$ does not change in step 6, and after the loop in steps 5–6 we have $|\mu_{ih}| \leq 1/2$ for $1 \leq h < i$.

Figure: The effect of one replacement step on the μ_{ij} .

LEMMA 4. Suppose that b_{i-1} and b_i are exchanged in step 8, and denote by c_1, \ldots, c_ℓ and c_1^*, \ldots, c_ℓ^* the values of the vectors and their Gram-Schmidt orthogonal basis after the exchange, respectively. Then

i.
$$c_k^* = b_k^*$$
 for $k \in \{1, \dots, \ell\} \setminus \{i - 1, i\}$,
ii. $\|c_{i-1}^*\|^2 < \frac{3}{4} \|b_{i-1}^*\|^2$,
iii. $\|c_i^*\| \le \|b_{i-1}^*\|$.

LEMMA 5. At the beginning of each iteration of the loop in steps 4–10, the following invariants hold:

$$|\mu_{kh}| \le \frac{1}{2}$$
 for $1 \le h < k < i$, $||b_{k-1}^*||^2 \le 2||b_k^*||^2$ for $1 \le k < i$.

At any stage in the algorithm and for $1 \leq k \leq \ell,$ we consider the matrix

$$B_k = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} \in \mathbb{Z}^{k \times n}$$

comprising the first k vectors, their Gram matrix $B_k \cdot B_k^T = (b_j \star b_h)_{1 \leq j,h \leq k} \in \mathbb{Z}^{k \times k}$, and the *Gram determinant* $d_k = \det(B_k \cdot B_k^T) \in \mathbb{Z}$. For convenience, we let $d_0 = 1$.

LEMMA 6. For
$$1 \le k \le \ell$$
, we have $d_k = \prod_{1 \le h \le k} \|b_h^*\|^2 > 0$.

LEMMA 7. i. In steps 5–6, none of the d_k changes.

ii. If b_{i-1} and b_i are exchanged in step 7–10 and d_k^* denotes the new value of d_k , for any k, then $d_k^* = d_k$ for $k \neq i-1$ and $d_{i-1}^* \leq \frac{3}{4}d_{i-1}$.

step	$\left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right)$	$\left(\begin{array}{c} \mu_{21} \\ \mu_{31} & \mu_{32} \end{array}\right)$	$\left(\begin{array}{c} \ b_1^*\ ^2 \\ \ b_2^*\ ^2 \\ \ b_3^*\ ^2 \end{array}\right)$	$\begin{array}{c} d_1, d_2 \\ D \end{array}$	action
4	$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 3 & 5 & 6 \end{array}\right)$	$\left(\begin{array}{cc} \frac{1}{3} \\ \frac{14}{3} & \frac{13}{14} \end{array}\right)$	$\begin{pmatrix} 3\\ \frac{14}{3}\\ \frac{9}{14} \end{pmatrix}$	$3,14 \\ 42$	rep(3,2)
4	$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 4 & 5 & 4 \end{array}\right)$	$\left(\begin{array}{cc} \frac{1}{3} \\ \frac{13}{3} & \frac{-1}{14} \end{array}\right)$	$\begin{pmatrix} 3\\ \frac{14}{3}\\ \frac{9}{14} \end{pmatrix}$	3,14 42	rep(3,1)
5	$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 0 & 1 & 0 \end{array}\right)$	$\left(\begin{array}{cc} \frac{1}{3} \\ \frac{1}{3} & \frac{-1}{14} \end{array}\right)$	$\begin{pmatrix} 3\\ \frac{14}{3}\\ \frac{9}{14} \end{pmatrix}$	3,14 42	ex(3,2)
5	$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{array}\right)$	$\left(\begin{array}{cc} \frac{1}{3} \\ \frac{1}{3} & \frac{-1}{2} \end{array}\right)$	$\begin{pmatrix} 3\\ \frac{2}{3}\\ \frac{9}{2} \end{pmatrix}$	3,2 6	ex(2,1)
4	$\left(\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 2 \end{array}\right)$	$\left(\begin{array}{cc}1\\0&\frac{1}{2}\end{array}\right)$	$ \left(\begin{array}{c} 1\\ 2\\ \frac{9}{2} \end{array}\right) $	1,2 2	rep(2,1)
6	$\left(\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 2 \end{array}\right)$	$\left(\begin{array}{cc} 0 \\ 0 \\ 1 \end{array}\right)$	$\begin{pmatrix} 1\\ 2\\ \frac{9}{2} \end{pmatrix}$	1,2 2	

Table: Trace of the basis reduction Algorithm 1 on the lattice $L = \mathbb{Z}(1, 1, 1) + \mathbb{Z}(-1, 0, 2) + \mathbb{Z}(3, 5, 6).$

COROLLARY 8. Given linearly independent vectors $a_1, \ldots, a_\ell \in \mathbb{Z}^n$ whose norm has bit length at most m, the basis reduction algorithm Algorithm 1 computes a reduced basis b_1, \ldots, b_ℓ of $L = \sum_{1 \le i \le \ell} \mathbb{Z} a_i$. Furthermore, b_1 is a "short" nonzero vector in L with

$$||b_1|| \le 2^{(\ell-1)/2} \lambda_1(L) = 2^{(\ell-1)/2} \min\{||y|| \colon 0 \ne y \in L\}.$$

It uses $O(n^6m^3)$ bit operations.