The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen Dr. Daniel Loebenberger

The hidden number problem

We have a prime p, and want to find an unknown integer s, given some high-order bits of st_i in \mathbb{Z}_p for various random t_i .

More precisely: We are given $t_1,\ldots,t_n\in\mathbb{Z}_p^{\times}$, a positive integer α , and some $u_i\in V_{\alpha}(st_i\operatorname{srem} p)$ for each $i\leq n$, and want to compute $s\in R_p$.

We consider the lattice L spanned by the rows a_0, \ldots, a_n of the following $(n+1) \times (n+1)$ matrix:

$$A = \begin{pmatrix} 1/\alpha & t_1 & t_2 & \cdots & t_n \\ 0 & p & 0 & \cdots & 0 \\ 0 & 0 & p & & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & p \end{pmatrix}$$
 (1

 $Algorithm\ 2.$ Finding a hidden number.

Input: A prime p, positive integers α and n, and $t=(t_1,\ldots,t_n)\in(\mathbb{Z}_p^\times)^n$ and $u=(u_1,\ldots,u_n)\in\mathbb{Z}^n$, so that there exists an (unknown) $s\in\mathbb{Z}_p$ with $u_i\in V_\alpha(t_is \text{ srem }p)$ for all $i\leq n$.

Output: $s^* \in R_p$ with

$$u_i \in V_{\alpha}(t_i s^* \text{ srem } p) \text{ for all } i \le n,$$
 (3)

or "failure".

- 1. Run the basis reduction Algorithm 6 on the basis A in (1) and return a reduced basis B.
- 2. Let L be the lattice generated by B. Call the nearest hyperplane Algorithm 7 to return some $x=(x_0,\ldots,x_n)\in L$ which is $2^{(n+1)/2}$ -close to u.
- 3. $s^* \leftarrow x_0 \cdot \alpha$.
- 4. If (3) holds, then return s^* else return "failure".

THEOREM 4. Let $p \geq 2^{36}$ be prime, $\lambda = (\log_2 p)^{1/2}$, $\epsilon = \lambda^{-1}$, $\alpha \geq 2^{5\lambda}$, $n = \lfloor \lambda/2 \rfloor$, and assume $s \in \mathbb{Z}_p$ as specified. There exists a set $E \subset (\mathbb{Z}_p^\times)^n$ with $\#E \leq p^{n(1-\epsilon)}$ such that for all inputs with $t \in (\mathbb{Z}_p^\times)^n \setminus E$, Algorithm 2 correctly computes s. The algorithm runs in polynomial time.

COROLLARY 5. Let $p \geq 2^{36}$ be prime, $\lambda = (\log_2 p)^{1/2}$, $\alpha = \lceil 2^{5\lambda} \rceil$, and $n = \lfloor \lambda/2 \rfloor$. If $t \stackrel{\text{\tiny dep}}{\longleftarrow} (\mathbb{Z}_p^\times)^n$ is chosen randomly, then the success probability that $s^* = s$ of Algorithm 2 is at least

$$1 - \frac{5\sqrt{\log_2 p/2}}{\sqrt{p}} > 1 - 5 \cdot 10^{-4} > \frac{1}{2}.$$

ALGORITHM 6. Basis reduction.

Input: Linearly independent row vectors $a_1, \ldots, a_\ell \in \mathbb{Z}^n$.

Output: A reduced basis b_1, \ldots, b_ℓ of the lattice

$$L = \sum_{1 \le i \le \ell} \mathbb{Z} a_i \subseteq \mathbb{Z}^n.$$

- 1. For $i = 1, \ldots, \ell$ do $b_i \leftarrow a_i$.
- 2. Compute the GSO $B^* \in \mathbb{Q}^{\ell \times n}$, $M \in \mathbb{Q}^{\ell \times \ell}$,
- 3. $i \leftarrow 2$.
- 4. While $i < \ell$ do 5–10
- 5. For $j = i 1, i 2, \dots, 1$ do step
- 6. $b_i \leftarrow b_i \lceil \mu_{ij} \rfloor b_j$, update the GSO, { replacement step }
- 7. If i > 1 and $||b_{i-1}^*||^2 > 2||b_i^*||^2$ then
- 8. exchange b_{i-1} and b_i and update the GSO, $\{$ exchange step $\}$
- 9. $i \leftarrow i 1$.
- 10. Else $i \leftarrow i + 1$.
- 11. Return b_1, \ldots, b_ℓ .

ALGORITHM 7. Nearest hyperplane.

Input: A reduced basis $B=(b_1,\ldots,b_\ell)$ of an ℓ -dimensional lattice L in \mathbb{R}^n , and $u\in\operatorname{span}_\mathbb{R}(L)\subseteq\mathbb{R}^n$.

Output: $x \in L$ with $\|u - x\| \le 2^{\ell/2} d(u, L)$.

- 1. Compute the GSO $(b_1^*, \ldots, b_\ell^*)$ of (b_1, \ldots, b_ℓ) .
- 2. Compute $c = u \star b_{\ell}^*/(b_{\ell}^* \star b_{\ell}^*)$.
- 3. $c' \leftarrow \lceil c \rfloor$, $v \leftarrow u (c c')b_{\ell}^*$, $y \leftarrow c'b_{\ell}$.
- 4. If $\ell=1$, then return x=y. Else let M be the lattice generated by $b_1,\ldots,b_{\ell-1}$. Call the algorithm recursively to return $z\in M$ close to v-y.
- 5. Return x = y + z.