The art of cryptography, summer 2013
 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen
Dr. Daniel Loebenberger

We recall the Diffie-Hellman problem $\left(\mathrm{DH}_{G}\right)$: we have a cyclic group $G=\langle g\rangle$ with generator g, are given $A=g^{a}$ and $B=g^{b}$ (but do not know the exponents a and b), and have to compute $g^{a b}$. Then $\left(g^{a}, g^{b}, g^{a b}\right)$ are a DH triple.
For $G=\mathbb{Z}_{p}^{\times}$, we need a prime p of about 2000 bits at current security requirements. In many applications, only a small part of the common key is used, say the leading 256 bits as a shared AES key. We proceed to show that the leading $5 \cdot \sqrt{2000} \approx 224$ bits are secure.

Algorithm 1. Reduction from DH to leading bits of DH.
Input: A prime p, a generator g of \mathbb{Z}_{p}^{\times}, and $A, B \in \mathbb{Z}_{p}^{\times}$.
Output: Some $w \in \mathbb{Z}_{p}^{\times}$, likely to solve the DH problem for A, B.

1. $\lambda \longleftarrow\left(\log _{2} p\right)^{1 / 2}$,
$\mu \longleftarrow 5 \lambda$,
$\alpha=\left\lceil 2^{\mu}\right\rceil$,
$n \longleftarrow\lfloor\lambda / 2\rfloor$.
2. $r \longleftarrow \mathbb{Z}_{p-1}$,
$C \longleftarrow A g^{r}$.
3. For $1 \leq i \leq n$ do steps 4 and 5 .
4. $d_{i} \longleftarrow \mathbb{Z}_{p-1}, D_{i} \longleftarrow B g^{d_{i}}, t_{i} \longleftarrow C^{d_{i}}$.
5. Call a leading bit algorithm for C and D_{i} to return $u_{i} \in V_{\alpha}\left(y_{i}\right.$ srem $\left.p\right)$, where $\left(C, D_{i}, y_{i}\right)$ is a DH triple.
6. Call the hidden number algorithm with input $t=\left(t_{1}, \ldots, t_{n}\right)$ and $u=\left(u_{1}, \ldots, u_{n}\right)$ to return $s \in \mathbb{Z}_{p}^{\times}$or "failure". In the latter case return "failure".
7. Return $w=s B^{-r} \in \mathbb{Z}_{p}^{\times}$.

Theorem 2. Let $p \geq 2^{36}$ be a k-bit prime and $G=\mathbb{Z}_{p}^{\times}$. The output s of the algorithm solves the DH_{G} problem for A, B with probability at least $1 /\left(4 \log _{2} k\right)$. It uses polynomial time plus at most $\sqrt{k} / 2$ calls to a leading bit algorithm for DH_{G}.

Corollary 3. Let $p \geq 2^{36}$ be a k-bit prime, $G=\mathbb{Z}_{p}^{\times}$, and $\alpha=\left\lceil 2^{5 \sqrt{k}}\right\rceil$. If DH_{G} is secure against polynomial-time attacks with success probability at least $1-1 /\left(4 \log _{2} k\right)$, then DH_{G} is also secure against polynomial-time α-approximations.

