The art of cryptography, summer 2013 Lattices and cryptography

> Prof. Dr. Joachim von zur Gathen Dr. Daniel Loebenberger

We recall the Diffie-Hellman problem (DH_G): we have a cyclic group $G = \langle g \rangle$ with generator g, are given $A = g^a$ and $B = g^b$ (but do not know the exponents a and b), and have to compute g^{ab} . Then (g^a, g^b, g^{ab}) are a DH triple. For $G = \mathbb{Z}_p^{\times}$, we need a prime p of about 2000 bits at current security requirements. In many applications, only a small part of the common key is used, say the leading 256 bits as a shared AES key. We proceed to show that the leading $5 \cdot \sqrt{2000} \approx 224$ bits are secure. $\operatorname{AlgoriTHM}$ 1. Reduction from DH to leading bits of DH.

Input: A prime p, a generator g of \mathbb{Z}_p^{\times} , and $A, B \in \mathbb{Z}_p^{\times}$. Output: Some $w \in \mathbb{Z}_p^{\times}$, likely to solve the DH problem for A, B.

- 1. $\lambda \longleftarrow (\log_2 p)^{1/2}$, $\mu \longleftarrow 5\lambda$, $\alpha = \lceil 2^{\mu} \rceil$, $n \longleftarrow \lfloor \lambda/2 \rfloor$.
- 2. $r \xleftarrow{\mathfrak{B}} \mathbb{Z}_{p-1},$ $C \longleftarrow Ag^r.$
- 3. For $1 \le i \le n$ do steps 4 and 5.

4.
$$d_i \xleftarrow{\mathfrak{W}} \mathbb{Z}_{p-1}, D_i \longleftarrow Bg^{d_i}, t_i \longleftarrow C^{d_i}.$$

- 5. Call a leading bit algorithm for C and D_i to return $u_i \in V_{\alpha}(y_i \text{ srem } p)$, where (C, D_i, y_i) is a DH triple.
- 6. Call the hidden number algorithm with input $t = (t_1, \ldots, t_n)$ and $u = (u_1, \ldots, u_n)$ to return $s \in \mathbb{Z}_p^{\times}$ or "failure". In the latter case return "failure".

7. Return
$$w = sB^{-r} \in \mathbb{Z}_p^{\times}$$
.

THEOREM 2. Let $p \ge 2^{36}$ be a k-bit prime and $G = \mathbb{Z}_p^{\times}$. The output s of the algorithm solves the DH_G problem for A, B with probability at least $1/(4\log_2 k)$. It uses polynomial time plus at most $\sqrt{k}/2$ calls to a leading bit algorithm for DH_G.

COROLLARY 3. Let $p \ge 2^{36}$ be a k-bit prime, $G = \mathbb{Z}_p^{\times}$, and $\alpha = \lceil 2^{5\sqrt{k}} \rceil$. If DH_G is secure against polynomial-time attacks with success probability at least $1 - 1/(4 \log_2 k)$, then DH_G is also secure against polynomial-time α -approximations.