The art of cryptography: Lattices and cryptography, summer 2013

Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

8. Exercise sheet Hand in solutions until Sunday, 16 June 2013, 23:59h.

Exercise 8.1.

Let $p \neq q$ be prime numbers, $N=p \cdot q, f=x \in \mathbb{Z}_{N}[x]$.
(i) Show that $p^{2}+q^{2}$ is a unit in \mathbb{Z}_{N}^{\times}, i.e. $\operatorname{gcd}\left(p^{2}+q^{2}, p q\right)=1$.
(ii) Let $u \in \mathbb{Z}_{N}$ be the inverse of $p^{2}+q^{2}$. Show that $f=u(p x+q)(q x+p)$.
(iii) Prove that the two linear factors in (ii) are irreducible in $\mathbb{Z}_{N}[x]$. Hint: Consider the situation in \mathbb{Z}_{p} and and \mathbb{Z}_{q} separately.
(iv) Conclude that factoring N is polynomial-time reducible to factoring polynomials in $\mathbb{Z}_{N}[x]$.

Exercise 8.2 (An inequality of norms).
Let $f \in \mathbb{Z}[t]$ be a polynomial of degree n. Define $\|f\|_{1}:=\sum_{1<i<n}\left|f_{i}\right|$ and $\|f\|_{2}:=3$ $\left(\sum_{1 \leq i \leq n} f_{i}^{2}\right)^{1 / 2}$. Let $\sigma(f):=\#\left\{i \mid f_{i} \neq 1\right\}$ be the sparsity of f. Show that we have $\|f\|_{1} \leq \sqrt{\sigma(f)}\|f\|_{2}$. Hint: Use the Cauchy-Schwarz inequality $\langle f, g\rangle \leq\|f\| \cdot\|g\|$, where f and g are the coefficient vectors of two polynomials of degree n.

Exercise 8.3 (The Coppersmith method)

(27+5 points)
In the lecture we discussed an algorithm for finding small polynomials with highorder roots.
(i) Implement the algorithm in a programming language of your choice.
(ii) Play around with the parameters of the above algorithm. In particular perform the following experiments: Set $N=2183, \mu=1 / 2, v=56, f=x+v$. Now compute for all $1 \leq k \leq 15$ the largest $c \geq 3$ for which your algorithm produces you a valid result.
(iii) What do the results tell you in the context of the security of RSA primes? Explain detailed.
(iv) Perform the same experiment with other values of v.

