8. Exercise sheet
Hand in solutions until Sunday, 16 June 2013, 23:59h.

Exercise 8.1. (10 points)
Let \(p \neq q \) be prime numbers, \(N = p \cdot q, f = x \in \mathbb{Z}_N[x] \).

(i) Show that \(p^2 + q^2 \) is a unit in \(\mathbb{Z}_N \), i.e. \(\gcd(p^2 + q^2, pq) = 1 \).

(ii) Let \(u \in \mathbb{Z}_N \) be the inverse of \(p^2 + q^2 \). Show that \(f = u(px + q)(qx + p) \).

(iii) Prove that the two linear factors in (ii) are irreducible in \(\mathbb{Z}_N[x] \). Hint: Consider the situation in \(\mathbb{Z}_p \) and \(\mathbb{Z}_q \) separately.

(iv) Conclude that factoring \(N \) is polynomial-time reducible to factoring polynomials in \(\mathbb{Z}_N[x] \).

Exercise 8.2 (An inequality of norms). (3 points)
Let \(f \in \mathbb{Z}[t] \) be a polynomial of degree \(n \). Define \(\|f\|_1 := \sum_{1 \leq i \leq n} |f_i| \) and \(\|f\|_2 := (\sum_{1 \leq i \leq n} f_i^2)^{1/2} \). Let \(\sigma(f) := \# \{ i | f_i \neq 0 \} \) be the sparsity of \(f \). Show that we have \(\|f\|_1 \leq \sqrt{\sigma(f)} \cdot \|f\|_2 \). Hint: Use the Cauchy-Schwarz inequality \(\langle f, g \rangle \leq \|f\| \cdot \|g\| \), where \(f \) and \(g \) are the coefficient vectors of two polynomials of degree \(n \).

Exercise 8.3 (The Coppersmith method). (27+5 points)
In the lecture we discussed an algorithm for finding small polynomials with high-order roots.

(i) Implement the algorithm in a programming language of your choice.

(ii) Play around with the parameters of the above algorithm. In particular perform the following experiments: Set \(N = 2183, \mu = 1/2, v = 56, f = x + v \). Now compute for all \(1 \leq k \leq 15 \) the largest \(c \geq 3 \) for which your algorithm produces you a valid result.

(iii) What do the results tell you in the context of the security of RSA primes? Explain detailed.

(iv) Perform the same experiment with other values of \(v \). +5