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8. Exercise sheet
Hand in solutions until Sunday, 16 June 2013, 23:59h.

Exercise 8.1. (10 points)

Let p # ¢ be prime numbers, N =p- ¢, f =z € Zy[z].

(i) Show that p? + ¢% is a unitin ZY, i.e. gcd(p® + ¢2,pq) = 1.
(i) Letwu € Zy be the inverse of p? + ¢2. Show that f = u(pz + q)(qz + p).

(iii) Prove that the two linear factors in (ii) are irreducible in Zy[z]. Hint: Con-
sider the situation in Z, and and Z, separately.

(iv) Conclude that factoring N is polynomial-time reducible to factoring polyno-
mials in Zy[z].

Exercise 8.2 (An inequality of norms). (3 points)

Let f € Z[t] be a polynomial of degree n. Define || f||1 :=>_,,,, |fi| and || f]|2 :=
(Cicicn FHY2 Let a(f) := #{i| f: # 1} be the sparsity of f. Show that we have

£l < /o) fll2. Hint: Use the Cauchy-Schwarz inequality (f, g) < ||f]| - |lg]l,
where f and g are the coefficient vectors of two polynomials of degree n.

Exercise 8.3 (The Coppersmith method). (27+5 points)
In the lecture we discussed an algorithm for finding small polynomials with high-
order roots.

(i) Implement the algorithm in a programming language of your choice.

(ii) Play around with the parameters of the above algorithm. In particular per-
form the following experiments: Set N = 2183, u = 1/2, v = 56, f = x + v.
Now compute for all 1 < k < 15 the largest ¢ > 3 for which your algorithm
produces you a valid result.

(iif) What do the results tell you in the context of the security of RSA primes?
Explain detailed.

(iv) Perform the same experiment with other values of v.
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