The art of cryptography: Lattices and cryptography, summer 2013

Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

10. Exercise sheet

Hand in solutions until Sunday, 30 June 2013, 23:59h.

Exercise 10.1 (Δ of two balls).

($8+5$ points)
Let $B_{n}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$ be the n-dimensional unit ball. Consider two 2dimensional balls of radius $\sqrt{2}$ whose distance of the centers is exactly 1 . For example consider the two balls $\sqrt{2} B_{2}$ and $(0,1)+\sqrt{2} B_{2}$. In the lecture we defined for two probability distributions X and Y over a set S their statistical distance $\Delta(X, Y)$ as

$$
\Delta(X, Y)=\max \{|X(A)-Y(A)|: A \subset S\}
$$

Consider here the distributions $X=\mathcal{U}\left(\sqrt{2} B_{2}\right)$ and $Y=\mathcal{U}\left((0,1)+\sqrt{2} B_{2}\right)$.
(i) Draw a picture of the two balls. Where in the picture do you find the statistical difference $\Delta(X, Y)$?
(ii) Compute $\Delta(X, Y)$. Hint: You need a bit basic calculus here. Parametrize the balls by appropriate functions in one variable and compute some areas.
(iii) What do you observe when you vary the radius and the distance? Perform experiments!

Exercise 10.2 (Amplification - or: A little bit better than guessing is enough).
(12 points)
Think of a boolean variable T and an algorithm \mathcal{A} with output A and a probability slightly better than guessing to determine the value of T, i.e.

$$
p=\operatorname{prob}(A=T)>\frac{1}{2}
$$

Imagine a new algorithm \mathcal{B} which calls $\mathcal{A} m$-times and outputs B as the majority of the $A s$ - returning failure in the event of a draw.
(i) Prove that

$$
\operatorname{prob}(B==T)>\sum_{m / 2<i \leq m}\binom{m}{i} p^{i}(1-p)^{m-i}
$$

and give a simple - but still useful - lower bound for the sum. (Hint: Use the Chernoff bound)
(ii) How many repetitions m do you need for $p=0.6,0.7,0.8$ in order to guaran-
tee $\operatorname{prob}(B=T)>0.9$.
(iii) Let $p=\frac{1}{2}+\frac{1}{n}$. Determine a number of repetitions such that

$$
\operatorname{prob}(B=T)>1-e^{-c n}
$$

for some constant $c>0$.

