The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen

Consider the Chinese Remainder version CRT-RSA of RSA, where the n/2-bit prime factors p and q of N are kept as part of the secret key. The exponents d and e are reduced modulo p-1 and q-1, respectively, to obtain d_p, d_q, e_p , and e_q . Then the RSA exponentiation can be performed with only one eighth of the cost of the standard method.

How many bits of the n/2-bit d_q are sufficient? We show that slightly more than the top half are enough, provided that the public exponent e is small.

LEMMA 1. Let p, q, N = pq be as in the RSA notation, k and v positive integers with $k \neq 0$ in \mathbb{Z}_p and

$$|kq - v| \le N^{1/4}.$$

Given N and v, we can compute q in polynomial time.

THEOREM 2. In the RSA notation p,q,N,e,d, assume that $N^{1/4} and <math>1 < e \le N^{\alpha}$ for some α with $0 < \alpha \le 1/4$, and let $v \in \mathbb{Z}$ be an approximation of $d_q \in \mathbb{Z}_{q-1}$ with

$$|d_q - v| \le N^{1/4 - \alpha}.$$

Given N and v, one can factor N in polynomial time.

COROLLARY 3. As in Theorem 3, we take the RSA notation p,q,N,d,e, and $0<\alpha\leq 1/4$ with $N^{1/4}< p< q$ and $1< e\leq N^{\alpha}$, and assume that N is hard to factor. Then it is hard to find an approximation to d_q to within $N^{1/4-\alpha}$.

EXAMPLE 4. Parts of the German online banking system used a 1024-bit RSA modulus N, between 2^{1023} and 2^{1024} , and a fixed public exponent $e=2^{16}+1=65\,337=2^{1024/64}+1.$ For each such N, we have $2^{16}+1\leq N^\alpha$ with $\alpha<0.016.$ We can apply the corollary and conclude that it is hard to approximate d_q to within $N^{1/4-\alpha}>2^{239.7}.$

If d is sufficiently random, then d_q is likely to have about 512 bits. If we assume N to be hard to factor, then it is hard to find the top 512-239=273 bits of d_q .