The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen

α	$\log \alpha$	class
$2^{n\log^2\log n/\log n}$	$n \log^2 \log n / \log n$	Р
$2^{n\log\log n/\log n}$	$n\log\log n/\log n$	BPP
÷	:	÷
\sqrt{n}	$\frac{1}{2}\log n$	$NP\capcoNP$
\sqrt{n}	$\frac{1}{2}\log n$	not NP-hard
$\sqrt{\frac{n}{\log n}}$	$\frac{1}{2}(\log n - \log \log n)$	$NP\capcoAM$
$\bigvee \log n$	$2(\log n \log \log n)$	not NP-hard
÷	:	÷
$n^{1/\log\log n}$	$\log n / \log \log n$	hard
1	0	NP-hard (random)

Table : Complexity of α -approximations to SVP.

We define below a problem called *learning with errors* (LWE). The idea is that we are given positive integers q and n, several (a, b') with uniformly and independently chosen $a \xleftarrow{@} \mathbb{Z}_q^n$ and $b' \in \mathbb{Z}_q$, and want to find $u \in \mathbb{Z}_q^n$ under the guarantee that the errors

$$v = b' - a \star u \in \mathbb{Z}_q$$

follow a Gaussian distribution.

For a positive integer n and positive real r, the Gaussian function $\gamma_r^{(n)}$ is

$$\begin{array}{ccc} \gamma_r^{(n)} \colon \mathbb{R}^n & \longrightarrow & \mathbb{R}, \\ & x & \longmapsto & e^{-\pi (\|x\|/r)^2}. \end{array}$$

The total volume of \mathbb{R}^n under $\gamma_r^{(n)}$ is

$$\int_{\mathbb{R}^n} \gamma_r^{(n)}(x) \mathrm{d}x = r^n.$$

Thus we can define the continuous Gaussian distribution $\mathcal{G}_r^{(n)}$ on \mathbb{R}^n by its density $\rho_r^{(n)}(x) = r^{-n} \cdot \gamma_r^{(n)}(x)$. Then $\mathcal{G}_r^{(n)}(A) = r^{-n} \int_A \rho_r^{(n)}(x) dx$ for a measurable set $A \subseteq \mathbb{R}^n$ is the probability that some $x \in A$ is chosen if $x \nleftrightarrow \mathcal{G}_r^{(n)}$. We abbreviate $\mathcal{D}_{s,\mathcal{G}_r^{(1)}}$ as $\mathcal{D}_{s,r}$.

28/33

27/33

DEFINITION 1. Let $q, r : \mathbb{N} \longrightarrow \mathbb{R}$ with integral $q(n) \ge 2$ and r(n) > 0 for all n. An algorithm solves the learning with errors problem LWE_{s,r} if it determines $s \in \mathbb{Z}_{q(n)}^n$ with overwhelming probability, given access to any number, polynomial in n, of samples $(a,b) \in \mathbb{Z}_{q(n)}^n \times \mathbb{T}$ according to $\mathcal{D}_{s,r}$.

Stage 1: reduction (n/r)-GapSVP \leq_p LWE, Stage 2: reduction LWE \leq_p DLWE, Stage 3: LWE-based cryptosystem. DEFINITION 2. For a function $\alpha \colon \mathbb{N} \longrightarrow \mathbb{R}$ with $\alpha(n) \ge 1$ for all n, we define the α -gap shortest vector problem α -GapSVP as follows. Input is a basis A of an n-dimensional lattice L and a positive real number d. The answer is

$$\begin{cases} yes & \text{if } \lambda_1(L) \le d, \\ no & \text{if } \lambda_1(L) \ge \alpha(n) \cdot d. \end{cases}$$

When $d < \lambda_1(L) < \alpha(n) \cdot d$, any answer is permitted.

DEFINITION 3. For functions $\alpha, \beta \colon \mathbb{N} \longrightarrow \mathbb{R}$ with $\beta(n) \geq \alpha(n) \geq 1$ for all n, we define the β -to- α -gap shortest vector problem α -to- β -GapSVP as follows. Input is a basis A of an n-dimensional lattice L in \mathbb{R}^n with GSO (a_1^*, \ldots, a_n^*) and a positive integer d so that

i.
$$\lambda_1(L) \leq \beta(n)$$
,

ii.
$$||a_i^*|| \ge 1$$
 for $1 \le i \le n$,

iii. $1 \le d \le \beta(n)/\alpha(n)$.

The answer is, as in Definition 2,

$$\begin{cases} \text{yes} & \text{ if } \lambda_1(L) \leq d, \\ \text{no} & \text{ if } \lambda_1(L) \geq \alpha(n) \cdot d. \end{cases}$$

DEFINITION 4. For functions $\alpha, \beta \colon \mathbb{N} \longrightarrow \mathbb{R}$ with $\beta(n) \geq \alpha(n) \geq 1$ for all n, we define the β -to- α -gap shortest vector problem α -to- β -GapSVP as follows. Input is a basis A of an n-dimensional lattice L in \mathbb{R}^n with GSO (a_1^*, \ldots, a_n^*) and a positive integer d so that

i.
$$\lambda_1(L) \leq \beta(n)$$
,

ii.
$$||a_i^*|| \ge 1$$
 for $1 \le i \le n$,

iii. $1 \le d \le \beta(n)/\alpha(n)$.

The answer is, as in Definition 2,

$$\begin{cases} \text{yes} & \text{ if } \lambda_1(L) \leq d, \\ \text{no} & \text{ if } \lambda_1(L) \geq \alpha(n) \cdot d. \end{cases}$$

LEMMA 5. For any c, d > 0 and $z \in \mathbb{R}^n$ with $||z|| \le d$, and $d' = d\sqrt{cn/\log n}$, we have

$$\Delta(\mathcal{U}_{d'\mathcal{B}_n}, \mathcal{U}_{z+d'\mathcal{B}_n}) \le 1 - \frac{1}{\mathsf{poly}(n)}.$$

Figure : Δ of two shifted balls.

LEMMA 6. There is a probabilistic polynomial-time algorithm that takes as input a basis A of an n-dimensional lattice L and some $r > \max\{\|a_i^*\|: 1 \le i \le n\} \cdot \omega(\sqrt{\log n})$. As output it produces samples from a distribution whose statistical distance to $\mathcal{G}_{L,r}$ is negligible in n.

DEFINITION 7. Let L be an n-dimensional lattice and $\epsilon > 0$. The smoothing parameter $\eta_{\epsilon}(L)$ is the smallest s so that

$$\rho_{1/s}^{(n)}(L^* \setminus \{0\}) = \sum_{x \in L^* \setminus \{0\}} \rho_{1/s}^{(n)}(x) \le \epsilon.$$

LEMMA 8. Let L be an n-dimensional lattice and $\epsilon, c > 0$.

- i. If $s' > \eta_{\epsilon}(L)$, then $\rho_{1/s'}^{(n)}(L^* \setminus \{0\}) \leq \epsilon$.
- ii. $\eta_{\epsilon}(c \cdot L) = c \cdot \eta_{\epsilon}(L).$ iii. $\eta_{2^{-n}}(L) \leq \frac{\sqrt{n}}{\lambda_1(L^*)}.$
 - v. For any function f with $f(n) = \omega(\sqrt{\log n})$
- iv. For any function f with $f(n) = \omega(\sqrt{\log n})$, there exists a negligible function ϵ so that $\eta_{\epsilon(n)}(\mathbb{Z}) \leq f(n)$.
- v. If $0 < \epsilon < 1$, $r \ge \eta_{\epsilon}(L)$ and $d \in \mathbb{R}^n$, then

$$\frac{1-\epsilon}{1+\epsilon} \le \frac{\rho_r^{(n)}(L+d)}{\rho_r^{(n)}(L)} \le 1.$$

PROPOSITION 9. Let $\gamma, \epsilon, q \colon \mathbb{N} \longrightarrow \mathbb{R}_{>0}$ be functions with $\gamma(n) < 1, \epsilon$ negligible, and $q(n) \ge 2$ an integer for all n. There exists a reduction \mathcal{R} that takes as input a basis A of a lattice $L \subseteq \mathbb{R}^n$, real $r \ge \sqrt{2}q(n) \cdot \eta_{\epsilon(n)}(L^*)$ and $z \in \mathbb{R}^n$ with $d(z,L) \le \gamma(n)q(n)/\sqrt{2}r < \lambda_1(L)/2$. It makes use of two subroutines W and D, where W solves LWE_{$q(n),\gamma(n)$} using polynomially in n many samples, and D generates samples from $\mathcal{G}_{L^*,r}$. The output is with overwhelming probability (the unique) $x \in L$ closest to z.

ALGORITHM 10. Reduction from β -to- α -GapSVP to LWE. Input: A basis A of an n-dimensional lattice L, and $d \ge 1$. Output: "yes" or "no".

- 1. Choose a large N, polynomial in n.
- 2. Do step 3 through 7 N times.
- 3. $d' \leftarrow d \cdot \sqrt{n/(4 \log n)}$.
- 4. Choose w uniformly at random in the ball $d' \cdot \mathcal{B}_n = \{u \in \mathbb{R}^n \colon ||u|| \le d'\}.$
- 5. $x \longleftarrow w \operatorname{srem} L$.
- 6. Call the reduction $\mathcal R$ from Proposition 9 with input A, x and

$$r = \frac{q\sqrt{2n}}{\alpha d}.$$

The sampler for $\mathcal{G}_{L^*,r}$ is implemented by the algorithm from Lemma 6 on the reversed dual basis D of L^* . Let v be the output of \mathcal{R} .

- 7. If $v \neq x w$, then return "yes".
- 8. Return "no".

THEOREM 11. Let α , β , γ , $q: \mathbb{N} \longrightarrow \mathbb{R}_{>0}$ be such that $\gamma(n) < 1$, $\alpha(n) \geq n/(\gamma(n)\sqrt{\log n}), \beta(n) \geq \alpha(n), q(n) \in \mathbb{Z}$, and $q(n) \geq \beta(n) \cdot \omega(\sqrt{n^{-1}\log n})$ for all n. Then Algorithm 10 provides a probabilistic polynomial time reduction from solving worst-case β -to- α -GapSVP with overwhelming probability to solving LWE_{q(n),\gamma(n)} with polynomially in n many samples. LEMMA 12. Let $q, \alpha \colon \mathbb{N} \longrightarrow \mathbb{R}$ with $0 < \alpha(n) < 1$ and all prime factors p of the squarefree n-bit integer q(n) satisfying $\omega(\sqrt{\log n})/\alpha(n) \le p \le \operatorname{poly}(n)$. Then there is a probabilistic polynomial-time reduction from solving $\operatorname{LWE}_{q(n),\alpha}$ with overwhelming probability to distinguishing between $\mathcal{D}_{s,\alpha}$ and $\mathcal{U}(\mathbb{Z}_{q(n)}^n \times \mathbb{T})$ for unknown $s \in \mathbb{Z}_{q(n)}^n$ with overwhelming advantage. LEMMA 13. Let $q: \mathbb{N} \longrightarrow \mathbb{N}_{\geq 2}$, let C be a distribution on \mathbb{T} , and $\mathcal{U}_n = \mathcal{U}_{\mathbb{Z}_{q(n) \times \mathbb{T}}^n}$. There is a probabilistic polynomial time reduction from distinguishing between $\mathcal{D}_{s,C}$ and \mathcal{U}_n for an arbitrary $s \in \mathbb{Z}_{q(n)}^n$ with overwhelming advantage to distinguishing between $\mathcal{D}_{t,C}$ and \mathcal{U}_n for uniformly random $t \xleftarrow{\mathfrak{B}} \mathbb{Z}_{q(n)}^n$ with nonnegligible advantage.

For simplicity we write q instead of q(n). We now construct a trapdoor function based on lattices. For starters, we consider matrices $A \in \mathbb{Z}_q^{n \times \ell}$ and their (left) kernel

$$\operatorname{lker} A = \{ x \in \mathbb{Z}_q^n \colon xA = 0 \text{ in } \mathbb{Z}_q^\ell \}.$$

We always have $0 = (0, ..., 0) \in \ker A$. Notions like kernel and rank are well understood when q is prime, so that \mathbb{Z}_q is a field. For general q, we have following bound.

LEMMA 14. Let $\ell \ge n \ge 1$, $q \ge 2$, $\delta > 0$, and $p = \operatorname{prob}\{\operatorname{lker} A \neq \{0\}: A \xleftarrow{\mathfrak{W}} \mathcal{U}_{\mathbb{Z}_q^{n \times \ell}}\}.$

Then $p < q^n \cdot 2^{-\ell}$.

Given q and $A\in\mathbb{Z}_q^{n\times\ell}$, we define two lattices:

$$\Lambda(A) = \{ x \in \mathbb{Q}^{\ell} \colon q \cdot x \in \mathbb{Z}^{\ell}, \ \exists s \in \mathbb{Z}_q^n \quad q \cdot x = sA \text{ in } \mathbb{Z}_q^{\ell} \},$$
$$\Lambda^{\perp}(A) = \{ y \in \mathbb{Z}^{\ell} \colon Ay = 0 \text{ in } \mathbb{Z}_q^n \}.$$

Then $\mathbb{Z}^{\ell} \subseteq \Lambda(A)$ and $q\mathbb{Z}^{\ell} \subseteq \Lambda^{\perp}(A)$, and the two lattices are duals of each other.

We use an algorithm that generates an almost uniform A together with a "trapdoor" basis T of $\Lambda^{\perp}(A)$, whose vectors are fairly short.

FACT 15. There is a probability polynomial-time algorithm which on input n in unary, odd $q \ge 3$, and $\ell \ge 6n \log_2 q$ with $\ell \in \text{poly}(n)$, outputs a pair (A,T) of matrices with the following properties.

i. $A \in \mathbb{Z}_q^{n \times \ell}$ is distributed within negligible (in n) statistical distance from uniform,

ii.
$$T \in \mathbb{Z}^{\ell imes \ell}$$
 is a basis of $\Lambda^{\perp}(A)$,

iii. there is some $C \in O(\sqrt{n \log_2 q})$ so that each row of the GSO basis T^* has norm at most C.

We now have the following trapdoor function, including the family $\{g_A \colon \mathbb{Z}_q^n \longrightarrow \mathbb{T}_{q'}^\ell\}_{n \in \mathbb{N}}$, where we leave out the argument n in most places. The integers $q, q' \geq 2$ and real r > 0 are further parameters.

gen: Run the algorithm from Fact 15 to generate a function index A ∈ Z^{n×ℓ}_a and a trapdoor basis T ∈ Z^{ℓ×ℓ}.

• eval(A,s): Obtain $x \xleftarrow{@} \mathcal{G}_r^{(\ell)}$ and output

$$b = g_A(s, x) = \lfloor (sA)/q + x \rceil_{q'} \in \mathbb{T}_{q'}^{\ell}.$$
 (16)

inv(T, z): Run the nearest hyperplane algorithm with input z to find some y ∈ Λ(A) with ||z − y|| ≤ 2^{n−1}d(z, Λ(A)). Compute s ∈ Zⁿ_q with (sA)/q = y in T.

THEOREM 17. Let $A \in \mathcal{A}_q^{n \times \ell}$, $q' \geq 2C\sqrt{\ell}$, and $r^{-1} \geq C \cdot \omega(\sqrt{\log n})$. For any $s \in \mathbb{Z}_q^n$, the algorithm inv, on input (T, b) with $b = \lfloor (sA)/q + x \rceil_{q'} \in \mathbb{T}_{q'}^{\ell}$, outputs s with overwhelming probability over the choice of $x \nleftrightarrow \mathcal{G}_r^{(\ell)}$.

- ▶ Correctness. For every $s \in D_n$ and $b \notin g_a(s)$, ver(a, s, b) accepts with overwhelming probability over the random parameter $x \in X_n$.
- Unique preimage. For every $b \in R_n$ there is at most one $s \in D_n$ so that ver(a, s, b) accepts.
- ► Findable preimage. For every s ∈ D_n and b ∈ R_n with ver(a, s, b) accepting, we have inv(t, b) = s.

PEIKERT CRYPTOSYSTEM KEY GENERATION 18. Input: n in unary. Output: Public key pk and secret key sk.

1.
$$U \xleftarrow{@} \mathbb{Z}_q^{n \times \ell}$$
.
2. For $1 \le i \le k$ and $b \in \{0, 1\}$ do
3. $(A_{i,b}, T_{i,b}) \xleftarrow{@} T. gen(n)$.
4. Output pk = $(\{A_{i,b} : 1 \le i \le k, b \in \{0, 1\}\}, U)$
and sk = $(T_{1,0}, T_{1,1})$.

PEIKERT CRYPTOSYSTEM ENCAPSULATION 19. Input: pk. Output: encap(pk).

1.
$$(S.\operatorname{pk}, S.\operatorname{sk}) \xleftarrow{\hspace{0.6mm} {\mathfrak S}} S.\operatorname{gen}(n).$$

2. $y \xleftarrow{\hspace{0.6mm} {\mathfrak S}} \{0,1\}^j, s \xleftarrow{\hspace{0.6mm} {\mathfrak S}} \mathbb{Z}_q^n$ uniformly, $x_0 \xleftarrow{\hspace{0.6mm} {\mathfrak S}} \mathcal{G}_r^{(j)}.$
3. $b_0 \longleftarrow \lfloor (sU)/q + x_0 + y/2 \rceil_{q'} \in \mathbb{T}_{q'}^{\ell}.$
4. For $1 \le i \le k$ do.
5. indent $b_i \xleftarrow{\hspace{0.6mm} {\mathfrak S}} T.\operatorname{eval}(A_i, (s.\operatorname{pk})_i, s) \in \mathbb{T}_{q'}^{\ell}.$
6. $b \longleftarrow (b_0, b_1, \dots, b_k) \in \mathbb{T}_{q'}^{k\ell+j}.$
7. $\sigma \longleftarrow S.\operatorname{sign}(S.\operatorname{sk}, b).$
8. Output $\tau = (S.\operatorname{pk}, b, \sigma).$

Peikert Cryptosystem decapsulation 20.

Input: sk, τ .

Output: an element of $\{0,1\}^{\ell}$ or "failure".

- 1. Write $b = (b_0, b_1, \ldots, b_k)$ with $b_0 \in \mathbb{T}_{q'}^j$ and $b_i \in \mathbb{T}_{q'}^\ell$ for $1 \leq i \leq k$. If b cannot be parsed in this way, then return "failure".
- 2. Verify the signature by running S ver on τ . If this is rejected, then return "failure".

3.
$$s \leftarrow T. \operatorname{inv}(T_{1,(S.\mathbf{sk})_1}, b_1) \in \mathbb{Z}_q^n$$
.

- 4. For $1 \leq i \leq k$ do
- 5. Run T. ver on $(A_{i,S.{\sf pk}},s,b_i).$ If T. ver rejects, then return "failure".
- 6. $h \leftarrow b_0 (sU)/q \in \mathbb{T}^j = [0, 1)^j$.
- 7. For $1 \leq i \leq j$ do 8–9

8. $y_i \leftarrow 1$.

9. If $h_i \in [0, 1/4) \cup [3/4, 1)$ then $y_i \leftarrow 0$.

10. Return $y = (y_1, \dots, y_j) \in \{0, 1\}^j$.

LEMMA 21. The decapsulation procedure works correctly with overwhelming probability.

THEOREM 22. Assume that the signature scheme S is strongly unforgeable under one-time chosen message attacks, and that for $s \xleftarrow{\textcircled{\smallmathan\linewidth}} \mathcal{U}_{\mathbb{Z}_q^n}, G_{s,r}$ is pseudorandom. Then the above key encapsulation mechanism is indistinguishable under chosen message attacks.