The art of cryptography, summer 2013 Lattices and cryptography

Prof. Dr. Joachim von zur Gathen

α	$\log \alpha$	class
$2^{n \log ^{2} \log n / \log n}$	$n \log ^{2} \log n / \log n$	P
$2^{n \log \log n / \log n}$	$n \log \log n / \log n$	BPP
\vdots	\vdots	\vdots
\sqrt{n}	$\frac{1}{2} \log n$	NP $\cap \operatorname{coNP}$
$\sqrt{\frac{n}{\log n}}$	$\frac{1}{2}(\log n-\log \log n)$	not NP-hard
\vdots	\vdots	not NP-hard
$n^{1 / \log \log n}$	$\log n / \log \log n$	\vdots
1	0	NP-hard (random)

Table: Complexity of α-approximations to SVP.

We define below a problem called learning with errors (LWE). The idea is that we are given positive integers q and n, several $\left(a, b^{\prime}\right)$ with uniformly and independently chosen $a \leftrightarrows \mathbb{Z}_{q}^{n}$ and $b^{\prime} \in \mathbb{Z}_{q}$, and want to find $u \in \mathbb{Z}_{q}^{n}$ under the guarantee that the errors

$$
v=b^{\prime}-a \star u \in \mathbb{Z}_{q}
$$

follow a Gaussian distribution.

For a positive integer n and positive real r, the Gaussian function $\gamma_{r}^{(n)}$ is

$$
\begin{aligned}
\gamma_{r}^{(n)}: \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
x & \longmapsto e^{-\pi(\|x\| / r)^{2}} .
\end{aligned}
$$

The total volume of \mathbb{R}^{n} under $\gamma_{r}^{(n)}$ is

$$
\int_{\mathbb{R}^{n}} \gamma_{r}^{(n)}(x) \mathrm{d} x=r^{n}
$$

Thus we can define the continuous Gaussian distribution $\mathcal{G}_{r}^{(n)}$ on \mathbb{R}^{n} by its density $\rho_{r}^{(n)}(x)=r^{-n} \cdot \gamma_{r}^{(n)}(x)$. Then $\mathcal{G}_{r}^{(n)}(A)=r^{-n} \int_{A} \rho_{r}^{(n)}(x) d x$ for a measurable set $A \subseteq \mathbb{R}^{n}$ is the probability that some $x \in A$ is chosen if $x \longleftarrow \mathcal{G}_{r}^{(n)}$. We abbreviate $\mathcal{D}_{s, \mathcal{G}_{r}^{(1)}}$ as $\mathcal{D}_{s, r}$.

Definition 1. Let $q, r: \mathbb{N} \longrightarrow \mathbb{R}$ with integral $q(n) \geq 2$ and $r(n)>0$ for all n. An algorithm solves the learning with errors problem $L W E_{s, r}$ if it determines $s \in \mathbb{Z}_{q(n)}^{n}$ with overwhelming probability, given access to any number, polynomial in n, of samples $(a, b) \in \mathbb{Z}_{q(n)}^{n} \times \mathbb{T}$ according to $\mathcal{D}_{s, r}$.

Stage 1: reduction (n / r)-GapSVP \leq_{p} LWE, Stage 2: reduction LWE \leq_{p} DLWE,
Stage 3: LWE-based cryptosystem.

Definition 2. For a function $\alpha: \mathbb{N} \longrightarrow \mathbb{R}$ with $\alpha(n) \geq 1$ for all n, we define the α-gap shortest vector problem α-GapSVP as follows. Input is a basis A of an n-dimensional lattice L and a positive real number d. The answer is

$$
\begin{cases}\text { yes } & \text { if } \lambda_{1}(L) \leq d, \\ \text { no } & \text { if } \lambda_{1}(L) \geq \alpha(n) \cdot d .\end{cases}
$$

When $d<\lambda_{1}(L)<\alpha(n) \cdot d$, any answer is permitted.

Definition 3. For functions $\alpha, \beta: \mathbb{N} \longrightarrow \mathbb{R}$ with $\beta(n) \geq \alpha(n) \geq 1$ for all n, we define the β-to- α-gap shortest vector problem α-to- β-GapSVP as follows. Input is a basis A of an n-dimensional lattice L in \mathbb{R}^{n} with $\operatorname{GSO}\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)$ and a positive integer d so that

$$
\begin{aligned}
& \text { i. } \lambda_{1}(L) \leq \beta(n) \\
& \text { ii. }\left\|a_{i}^{*}\right\| \geq 1 \text { for } 1 \leq i \leq n \text {, }
\end{aligned}
$$

iii. $1 \leq d \leq \beta(n) / \alpha(n)$.

The answer is, as in Definition 2,

$$
\begin{cases}\text { yes } & \text { if } \lambda_{1}(L) \leq d \\ \text { no } & \text { if } \lambda_{1}(L) \geq \alpha(n) \cdot d\end{cases}
$$

Definition 4. For functions $\alpha, \beta: \mathbb{N} \longrightarrow \mathbb{R}$ with $\beta(n) \geq \alpha(n) \geq 1$ for all n, we define the β-to- α-gap shortest vector problem α-to- β-GapSVP as follows. Input is a basis A of an n-dimensional lattice L in \mathbb{R}^{n} with $\operatorname{GSO}\left(a_{1}^{*}, \ldots, a_{n}^{*}\right)$ and a positive integer d so that
i. $\lambda_{1}(L) \leq \beta(n)$,
ii. $\left\|a_{i}^{*}\right\| \geq 1$ for $1 \leq i \leq n$,
iii. $1 \leq d \leq \beta(n) / \alpha(n)$.

The answer is, as in Definition 2,

$$
\begin{cases}\text { yes } & \text { if } \lambda_{1}(L) \leq d \\ \text { no } & \text { if } \lambda_{1}(L) \geq \alpha(n) \cdot d\end{cases}
$$

Lemma 5. For any $c, d>0$ and $z \in \mathbb{R}^{n}$ with $\|z\| \leq d$, and $d^{\prime}=d \sqrt{c n / \log n}$, we have

$$
\Delta\left(\mathcal{U}_{d^{\prime} \mathcal{B}_{n}}, \mathcal{U}_{z+d^{\prime} \mathcal{B}_{n}}\right) \leq 1-\frac{1}{\operatorname{poly}(n)}
$$

Figure: Δ of two shifted balls.

Lemma 6. There is a probabilistic polynomial-time algorithm that takes as input a basis A of an n-dimensional lattice L and some $r>\max \left\{\left\|a_{i}^{*}\right\|: 1 \leq i \leq n\right\} \cdot \omega(\sqrt{\log n})$. As output it produces samples from a distribution whose statistical distance to $\mathcal{G}_{L, r}$ is negligible in n.

Definition 7. Let L be an n-dimensional lattice and $\epsilon>0$. The smoothing parameter $\eta_{\epsilon}(L)$ is the smallest s so that

$$
\rho_{1 / s}^{(n)}\left(L^{*} \backslash\{0\}\right)=\sum_{x \in L^{*} \backslash\{0\}} \rho_{1 / s}^{(n)}(x) \leq \epsilon .
$$

Lemma 8. Let L be an n-dimensional lattice and $\epsilon, c>0$.
i. If $s^{\prime}>\eta_{\epsilon}(L)$, then $\rho_{1 / s^{\prime}}^{(n)}\left(L^{*} \backslash\{0\}\right) \leq \epsilon$.
ii. $\eta_{\epsilon}(c \cdot L)=c \cdot \eta_{\epsilon}(L)$.
iii. $\eta_{2^{-n}}(L) \leq \frac{\sqrt{n}}{\lambda_{1}\left(L^{*}\right)}$.
iv. For any function f with $f(n)=\omega(\sqrt{\log n})$, there exists a negligible function ϵ so that $\eta_{\epsilon(n)}(\mathbb{Z}) \leq f(n)$.
v. If $0<\epsilon<1, r \geq \eta_{\epsilon}(L)$ and $d \in \mathbb{R}^{n}$, then

$$
\frac{1-\epsilon}{1+\epsilon} \leq \frac{\rho_{r}^{(n)}(L+d)}{\rho_{r}^{(n)}(L)} \leq 1
$$

Proposition 9. Let $\gamma, \epsilon, q: \mathbb{N} \longrightarrow \mathbb{R}_{>0}$ be functions with $\gamma(n)<1, \epsilon$ negligible, and $q(n) \geq 2$ an integer for all n. There exists a reduction \mathcal{R} that takes as input a basis A of a lattice $L \subseteq \mathbb{R}^{n}$, real $r \geq \sqrt{2} q(n) \cdot \eta_{\epsilon(n)}\left(L^{*}\right)$ and $z \in \mathbb{R}^{n}$ with $d(z, L) \leq \gamma(n) q(n) / \sqrt{2} r<\lambda_{1}(L) / 2$. It makes use of two subroutines W and D, where W solves $\operatorname{LWE}_{q(n), \gamma(n)}$ using polynomially in n many samples, and D generates samples from $\mathcal{G}_{L^{*}, r}$. The output is with overwhelming probability (the unique) $x \in L$ closest to z.

Algorithm 10. Reduction from β-to- α-GapSVP to LWE.
Input: A basis A of an n-dimensional lattice L, and $d \geq 1$.
Output: "yes" or "no".

1. Choose a large N, polynomial in n.
2. Do step 3 through 7 N times.
3. $d^{\prime} \longleftarrow d \cdot \sqrt{n /(4 \log n)}$.
4. Choose w uniformly at random in the ball $d^{\prime} \cdot \mathcal{B}_{n}=\left\{u \in \mathbb{R}^{n}:\|u\| \leq d^{\prime}\right\}$.
5. $x \longleftarrow w$ srem L.
6. Call the reduction \mathcal{R} from Proposition 9 with input A, x and

$$
r=\frac{q \sqrt{2 n}}{\alpha d}
$$

The sampler for $\mathcal{G}_{L^{*}, r}$ is implemented by the algorithm from Lemma 6 on the reversed dual basis D of L^{*}. Let v be the output of \mathcal{R}.
7. If $v \neq x-w$, then return "yes".
8. Return "no".

ThEOREM 11. Let $\alpha, \beta, \gamma, q: \mathbb{N} \longrightarrow \mathbb{R}_{>0}$ be such that $\gamma(n)<1$, $\alpha(n) \geq n /(\gamma(n) \sqrt{\log n}), \beta(n) \geq \alpha(n), q(n) \in \mathbb{Z}$, and $q(n) \geq \beta(n) \cdot \omega\left(\sqrt{n^{-1} \log n}\right)$ for all n. Then Algorithm 10 provides a probabilistic polynomial time reduction from solving worst-case β-to- α-GapSVP with overwhelming probability to solving $\mathrm{LWE}_{q(n), \gamma(n)}$ with polynomially in n many samples.

Lemma 12. Let $q, \alpha: \mathbb{N} \longrightarrow \mathbb{R}$ with $0<\alpha(n)<1$ and all prime factors p of the squarefree n-bit integer $q(n)$ satisfying $\omega(\sqrt{\log n}) / \alpha(n) \leq p \leq \operatorname{poly}(n)$. Then there is a probabilistic polynomial-time reduction from solving $\mathrm{LWE}_{q(n), \alpha}$ with overwhelming probability to distinguishing between $\mathcal{D}_{s, \alpha}$ and $\mathcal{U}\left(\mathbb{Z}_{q(n)}^{n} \times \mathbb{T}\right)$ for unknown $s \in \mathbb{Z}_{q(n)}^{n}$ with overwhelming advantage.

Lemma 13. Let $q: \mathbb{N} \longrightarrow \mathbb{N}_{\geq 2}$, let \mathcal{C} be a distribution on \mathbb{T}, and $\mathcal{U}_{n}=\mathcal{U}_{\mathbb{Z}_{q(n) \times \mathbb{T}}^{n}}$. There is a probabilistic polynomial time reduction from distinguishing between $\mathcal{D}_{s, \mathcal{C}}$ and \mathcal{U}_{n} for an arbitrary $s \in \mathbb{Z}_{q(n)}^{n}$ with overwhelming advantage to distinguishing between $\mathcal{D}_{t, \mathcal{C}}$ and \mathcal{U}_{n} for uniformly random $t \stackrel{\mathbb{Z}_{q(n)}^{n}}{ }$ with nonnegligible advantage.

For simplicity we write q instead of $q(n)$. We now construct a trapdoor function based on lattices. For starters, we consider matrices $A \in \mathbb{Z}_{q}^{n \times \ell}$ and their (left) kernel

$$
\text { Iker } A=\left\{x \in \mathbb{Z}_{q}^{n}: x A=0 \text { in } \mathbb{Z}_{q}^{\ell}\right\}
$$

We always have $0=(0, \ldots, 0) \in \operatorname{ker} A$. Notions like kernel and rank are well understood when q is prime, so that \mathbb{Z}_{q} is a field. For general q, we have following bound.

Lemma 14. Let $\ell \geq n \geq 1, q \geq 2, \delta>0$, and

$$
p=\operatorname{prob}\left\{\operatorname{lker} A \neq\{0\}: A \longleftarrow \mathcal{U}_{\mathbb{Z}_{q}^{n \times \ell}}\right\} .
$$

Then $p<q^{n} \cdot 2^{-\ell}$.

Given q and $A \in \mathbb{Z}_{q}^{n \times \ell}$, we define two lattices:

$$
\begin{aligned}
\Lambda(A) & =\left\{x \in \mathbb{Q}^{\ell}: q \cdot x \in \mathbb{Z}^{\ell}, \exists s \in \mathbb{Z}_{q}^{n} \quad q \cdot x=s A \text { in } \mathbb{Z}_{q}^{\ell}\right\}, \\
\Lambda^{\perp}(A) & =\left\{y \in \mathbb{Z}^{\ell}: A y=0 \text { in } \mathbb{Z}_{q}^{n}\right\} .
\end{aligned}
$$

Then $\mathbb{Z}^{\ell} \subseteq \Lambda(A)$ and $q \mathbb{Z}^{\ell} \subseteq \Lambda^{\perp}(A)$, and the two lattices are duals of each other.

We use an algorithm that generates an almost uniform A together with a "trapdoor" basis T of $\Lambda^{\perp}(A)$, whose vectors are fairly short.

FACT 15. There is a probability polynomial-time algorithm which on input n in unary, odd $q \geq 3$, and $\ell \geq 6 n \log _{2} q$ with $\ell \in \operatorname{poly}(n)$, outputs a pair (A, T) of matrices with the following properties.
i. $A \in \mathbb{Z}_{q}^{n \times \ell}$ is distributed within negligible (in n) statistical distance from uniform,
ii. $T \in \mathbb{Z}^{\ell \times \ell}$ is a basis of $\Lambda^{\perp}(A)$,
iii. there is some $C \in O\left(\sqrt{n \log _{2} q}\right)$ so that each row of the GSO basis T^{*} has norm at most C.

We now have the following trapdoor function, including the family $\left\{g_{A}: \mathbb{Z}_{q}^{n} \longrightarrow \mathbb{T}_{q^{\prime}}^{\ell}\right\}_{n \in \mathbb{N}}$, where we leave out the argument n in most places. The integers $q, q^{\prime} \geq 2$ and real $r>0$ are further parameters.

- gen: Run the algorithm from Fact 15 to generate a function index $A \in \mathbb{Z}_{q}^{n \times \ell}$ and a trapdoor basis $T \in \mathbb{Z}^{\ell \times \ell}$.
- eval (A, s) : Obtain $x \longleftarrow \mathcal{G}_{r}^{(\ell)}$ and output

$$
\begin{equation*}
b=g_{A}(s, x)=\lfloor(s A) / q+x\rceil_{q^{\prime}} \in \mathbb{T}_{q^{\prime}}^{\ell} \tag{16}
\end{equation*}
$$

- $\operatorname{inv}(T, z)$: Run the nearest hyperplane algorithm with input z to find some $y \in \Lambda(A)$ with $\|z-y\| \leq 2^{n-1} d(z, \Lambda(A))$.
Compute $s \in \mathbb{Z}_{q}^{n}$ with $(s A) / q=y$ in \mathbb{T}.

Theorem 17. Let $A \in \mathcal{A}_{q}^{n \times \ell}, q^{\prime} \geq 2 C \sqrt{\ell}$, and $r^{-1} \geq C \cdot \omega(\sqrt{\log n})$. For any $s \in \mathbb{Z}_{q}^{n}$, the algorithm inv, on input (T, b) with $b=\lfloor(s A) / q+x\rceil_{q^{\prime}} \in \mathbb{T}_{q^{\prime}}^{\ell}$, outputs s with overwhelming probability over the choice of $x \hookleftarrow \mathcal{G}_{r}^{(\ell)}$.

- Correctness. For every $s \in D_{n}$ and $b \longleftarrow g_{a}(s)$, ver (a, s, b) accepts with overwhelming probability over the random parameter $x \in X_{n}$.
- Unique preimage. For every $b \in R_{n}$ there is at most one $s \in D_{n}$ so that $\operatorname{ver}(a, s, b)$ accepts.
- Findable preimage. For every $s \in D_{n}$ and $b \in R_{n}$ with $\operatorname{ver}(a, s, b)$ accepting, we have $\operatorname{inv}(t, b)=s$.

Peikert cryptosystem key generation 18.
Input: n in unary.
Output: Public key pk and secret key sk.

1. $U \Longleftarrow \mathbb{Z}_{q}^{n \times \ell}$.
2. For $1 \leq i \leq k$ and $b \in\{0,1\}$ do
3. $\left(A_{i, b}, T_{i, b}\right) \leftrightarrows T$. gen (n).
4. Output $\mathrm{pk}=\left(\left\{A_{i, b}: 1 \leq i \leq k, b \in\{0,1\}\right\}, U\right)$ and $\mathrm{sk}=\left(T_{1,0}, T_{1,1}\right)$.

Peikert cryptosystem encapsulation 19. Input: pk.
Output: encap(pk).

1. $(S . \mathrm{pk}, S . \mathrm{sk}) \leftrightarrows S . \operatorname{gen}(n)$.
2. $y \longleftarrow\{0,1\}^{j}, s \longleftarrow \mathbb{Z}_{q}^{n}$ uniformly, $x_{0} \longleftarrow \mathcal{G}_{r}^{(j)}$.
3. $b_{0} \longleftarrow\left\lfloor(s U) / q+x_{0}+y / 2\right\rceil_{q^{\prime}} \in \mathbb{T}_{q^{\prime}}^{\ell}$.
4. For $1 \leq i \leq k$ do.
5. indent $b_{i} \Longleftarrow T$. eval $\left(A_{i},(s . \mathrm{pk})_{i}, s\right) \in \mathbb{T}_{q^{\prime}}^{\ell}$.
6. $b \longleftarrow\left(b_{0}, b_{1}, \ldots, b_{k}\right) \in \mathbb{T}_{q^{\prime}}^{k \ell+j}$.
7. $\sigma \longleftarrow S . \operatorname{sign}(S . s k, b)$.
8. Output $\tau=(S . \mathrm{pk}, b, \sigma)$.

Peikert cryptosystem decapsulation 20.
Input: sk, τ.
Output: an element of $\{0,1\}^{\ell}$ or "failure".

1. Write $b=\left(b_{0}, b_{1}, \ldots, b_{k}\right)$ with $b_{0} \in \mathbb{T}_{q^{\prime}}^{j}$ and $b_{i} \in \mathbb{T}_{q^{\prime}}^{\ell}$ for $1 \leq i \leq k$. If b cannot be parsed in this way, then return "failure".
2. Verify the signature by running S. ver on τ. If this is rejected, then return "failure".
3. $s \longleftarrow T \cdot \operatorname{inv}\left(T_{1,(S . s k)_{1}}, b_{1}\right) \in \mathbb{Z}_{q}^{n}$.
4. For $1 \leq i \leq k$ do
5. Run T. ver on $\left(A_{i, S . \mathrm{pk}}, s, b_{i}\right)$. If T. ver rejects, then return "failure".
6. $h \longleftarrow b_{0}-(s U) / q \in \mathbb{T}^{j}=[0,1)^{j}$.
7. For $1 \leq i \leq j$ do 8-9
8. $y_{i} \longleftarrow 1$.
9. If $h_{i} \in[0,1 / 4) \cup[3 / 4,1)$ then $y_{i} \longleftarrow 0$.
10. Return $y=\left(y_{1}, \ldots, y_{j}\right) \in\{0,1\}^{j}$.

LEmma 21. The decapsulation procedure works correctly with overwhelming probability.

Theorem 22. Assume that the signature scheme S is strongly unforgeable under one-time chosen message attacks, and that for $s \longleftarrow \mathcal{U}_{\mathbb{Z}_{q}^{n}}, G_{s, r}$ is pseudorandom. Then the above key encapsulation mechanism is indistinguishable under chosen message attacks.

