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Table : Complexity of a-approximations to SVP.
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We define below a problem called learning with errors (LWE). The
idea is that we are given positive integers ¢ and n, several (a,b’)
with uniformly and independently chosen a <% Zq and Ve Zy,
and want to find u € Zy under the guarantee that the errors

v=">b —a*xu€Z,

follow a Gaussian distribution.
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For a positive integer n and positive real r, the Gaussian function
SLRRE

WRY R,
v s e—nlal/r)

2

The total volume of R™ under %gn) is

Thus we can define the continuous Gaussian distribution gﬁ"’ on
R™ by its density p\™ (z) = =" - 1{") (). Then

g{m (A)=rT"[, pﬁ«n) (z)dx for a measurable set A C R" is the
probability that some 2 € A is chosen if = <& grn). We abbreviate

'D&gp) as Ds,r-
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DEFINITION 1. Let q,7 : N — R with integral ¢(n) > 2 and
r(n) > 0 for all n. An algorithm solves the learning with errors
problem LWE; . if it determines s € Zg(n) with overwhelming
probability, given access to any number, polynomial in n, of

samples (a,b) € Zeyy * T according to D,
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Stage 1: reduction (n/r)-GapSVP <, LWE,
Stage 2: reduction LWE <, DLWE,
Stage 3: LWE-based cryptosystem.
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DEFINITION 2. For a function a: N — R with a(n) > 1 for all
n, we define the a-gap shortest vector problem a-GapSVP as
follows. Input is a basis A of an n-dimensional lattice L and a
positive real number d. The answer is

{yes if \1(L)

<d,
no if A\ (L) > a(n

(n) - d.

When d < M\ (L) < a(n) - d, any answer is permitted.
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DEFINITION 3. For functions o, 3: N — R with

B(n) > a(n) > 1 for all n, we define the [3-to-a--gap shortest
vector problem a-to-B-GapSVP as follows. Input is a basis A of an
n-dimensional lattice L in R™ with GSO (aj,...,a}) and a
positive integer d so that

A(L) < B(n),
i. lay]| >1 forl <i<n,

ii. 1 <d< B(n)/a(n).
The answer is, as in Definition 2,
yes if A\ (L) <d,
> a(n

no if A\ (L) (n)-d.
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DEFINITION 4. For functions o, 3: N — R with

B(n) > a(n) > 1 for all n, we define the [3-to-a--gap shortest
vector problem a-to-B-GapSVP as follows. Input is a basis A of an
n-dimensional lattice L in R™ with GSO (aj,...,a}) and a
positive integer d so that

A(L) < B(n),
i. lay]| >1 forl <i<n,

ii. 1 <d< B(n)/a(n).
The answer is, as in Definition 2,
yes if A\ (L) <d,
> a(n

no if A\ (L) (n)-d.
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LEMMA 5. For any ¢,d > 0 and z € R" with ||z|| < d, and

d = dy/cn/logn, we have

1
AUap, Usras,) <1

~ poly(n)’
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Figure : A of two shifted balls.

20/33



LEMMA 6. There is a probabilistic polynomial-time algorithm that
takes as input a basis A of an n-dimensional lattice L. and some

r > max{||aj]|: 1 <i<n} w(y/logn). As output it produces
samples from a distribution whose statistical distance to Gy, , is
negligible in n.
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DEFINITION 7. Let L be an n-dimensional lattice and ¢ > 0. The
smoothing parameter n¢(L) is the smallest s so that

PN = > pil) <e

zeL*\{0}
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LEMMA 8. Let L be an n-dimensional lattice and €,c > 0.
i. If s >mn(L), then pi?i,(L* \{0}) <e
i (e L) = c-nl(L).
it mea(D) < 5l

iv. For any function f with f(n) = w(y/logn), there exists a
negligible function € so that ney,)(Z) < f(n).

v. If0<e<1,r>n(L) andd e R"™, then

_ (n)
1—e o P (L+d)

< o <1.
1+4+¢€ pi (L)
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PROPOSITION 9. Let v,¢,q: N — R+ be functions with
v(n) < 1,¢ negligible, and q(n) > 2 an integer for all n. There
exists a reduction R that takes as input a basis A of a lattice

L CR", real r > +/2q(n) - Ne(n)(L*) and z € R™ with

d(z, L) < v(n)g(n)/v/2r < \(L)/2. It makes use of two
subroutines W and D, where W solves LWE ;) ~(n) using
polynomially in n many samples, and D generates samples from
Gr+r. The output is with overwhelming probability (the unique)
x € L closest to z.
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ALGORITHM 10. Reduction from S-to-a-GapSVP to LWE.

Input: A basis A of an n-dimensional lattice L, and d > 1.
Output: “yes" or “no".

o

1. Choose a large N, polynomial in n.
2. Do step 3 through 7 N times.

3.
4

. Choose w uniformly at random in the ball

d +—d-\/n/(4logn).

d-B,={ueR": |ul <d}.
T <— wsrem L.
Call the reduction R from Proposition 9 with input A, = and

qVv'2n
r= .
ad

The sampler for G« , is implemented by the algorithm from
Lemma 6 on the reversed dual basis D of L*. Let v be the
output of R.
If v # 2 — w, then return “yes”.
Return “no”. 15/33




THEOREM 11. Let «, B3, 7, ¢: N — Ry be such that y(n) < 1,
a(n) = n/(y(n)vlogn), B(n) > a(n), q(n) € Z, and

q(n) > B(n)-w(y/n~tlogn) for alln. Then Algorithm 10 provides
a probabilistic polynomial time reduction from solving worst-case
B-to-a-GapSVP with overwhelming probability to solving
LWE(n),y(n) with polynomially in n.many samples.
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LEMMA 12. Let ¢,a: N — R with 0 < a(n) < 1 and all prime
factors p of the squarefree n-bit integer q(n) satisfying
w(v/Togn)/a(n) < p < poly(n). Then there is a probabilistic
polynomial-time reduction from solving L\WE () o, with
overwhelming probability to distinguishing between D ., and

u (Zg(n) x T) for unknown s € Ziy(,y with overwhelming advantage.
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LEMMA 13. Let g: N — N>o, let C be a distribution on T, and
U, = L{ZZ(H)XT. There is a probabilistic polynomial time reduction
from distinguishing between D, ¢ and U,, for an arbitrary s € Zg(n)

with overwhelming advantage to distinguishing between D¢ and
Uy, for uniformly random t <= Z"( ) with nonnegligible advantage.
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For simplicity we write ¢ instead of ¢(n). We now construct a
trapdoor function based on lattices. For starters, we consider
matrices A € ZZLX@ and their (left) kernel

lker A = {x € Z}): xtA=0in Z.}.

We always have 0 = (0,...,0) € ker A. Notions like kernel and
rank are well understood when ¢ is prime, so that Z, is a field. For
general ¢, we have following bound.
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LEMMA 14. Let{>n>1,q9¢>2,6>0, and

p = prob{lker A # {0}: A Uzgxz}.

Then p < g™ - 27,
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Given g and A € Zg“, we define two lattices:

AA)={xeQ':q-zeZ s € Zy q-mzsAinZé},
A (A) ={y e Z' Ay =0inZ]}.

Then Z' C A(A) and ¢Z' C A+(A), and the two lattices are duals
of each other.
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We use an algorithm that generates an almost uniform A together
with a “trapdoor” basis T of A+(A), whose vectors are fairly
short.

Fact 15. There is a probability polynomial-time algorithm which
on input n in unary, odd q > 3, and { > 6nlog, q with { € poly(n),
outputs a pair (A, T) of matrices with the following properties.

. Ae ZZL” is distributed within negligible (in n) statistical
distance from uniform,

i. T € Z isa basis of A+(A),

iii. there is some C € O(y/nlogy q) so that each row of the GSO
basis T* has norm at most C.
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We now have the following trapdoor function, including the family
{9a: Zy — ’]I‘f;,}neN, where we leave out the argument n in most
places. The integers ¢,¢' > 2 and real r > 0 are further
parameters.

» gen: Run the algorithm from Fact 15 to generate a function
index A € Z?Xf and a trapdoor basis T € Z!*!.

» eval(A, s): Obtain z <& G\ and output
b=ga(s,x) = [(s4)/q+ ], E’]I‘f;,. (16)
» inv(T, z): Run the nearest hyperplane algorithm with input z

to find some y € A(A) with ||z — y|| < 2"~ 1d(z, A(A)).
Compute s € Zy with (sA)/q =y in T.
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THEOREM 17. Let A € AP, ¢ > 2CV/1, and
r~1 > C-w(y/logn). For any s € Ly, the algorithm inv, on input
(T,b) withb= |(sA)/q+ x|y € ']Tf;,, outputs s with overwhelming

probability over the choice of x +% Q,@.
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» Correctness. For every s € D,, and b <% g,(s), ver(a, s, b)
accepts with overwhelming probability over the random
parameter x € X,.

> Unique preimage. For every b € R,, there is at most one
s € D,, so that ver(a, s,b) accepts.

» Findable preimage. For every s € D,, and b € R,, with
ver(a, s,b) accepting, we have inv(t,b) = s.
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PEIKERT CRYPTOSYSTEM KEY GENERATION 18.

Input: n in unary.
Output: Public key pk and secret key sk.

1. U <= 72%¢

2. For1<i<kandbe{0,1} do

3.

4. Output pk = ({A4;5: 1 <i<k,be{0,1}},U)

(Aip, Tip) <= T.gen(n).

and sk = (T170,T171).
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PEIKERT CRYPTOSYSTEM ENCAPSULATION 19.

Input: pk.
Output: encap(pk).

N o Ok W=

(S.pk, S.sk) <& S.gen(n).

y<Z {01}, s <& Zg uniformly, g B ,(?)_
bo <— L(sU)/q +xo+y/2], € Ty

For 1 < < k do.

indent b; <% T eval(A;, (s.pk);, s) € Tf.

b— (bo,br,...,by) € T:’}“j.

o <— S.sign(S.sk,b).
Output 7 = (S.pk,b,0).
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PEIKERT CRYPTOSYSTEM DECAPSULATION 20.

Input: sk, 7.
Output: an element of {0,1} or “failure".

1.

oo

v o N o

Write b = (bo, b, ..., b) with by € T, and b; € T, for
1 <¢ < k. If b cannot be parsed in this way, then return
“failure” .

. Verify the signature by running S.ver on 7. If this is rejected,

then return “failure”.
s «— T.inv(T} (S.sk)lﬂbl) € Zy.
For 1 <i<kdo

. Run T ver on (A, S.pk>57bi)- If T ver rejects, then return

“failure” . ‘
h<+— by — (sU)/q € TI = [0,1)’.
For1 <+ <jdo89

y; «— 1.

If h; € [0,1/4) U [3/4,1) then y; «— 0.
Return y = (y1,...,y;) € {0,1}7.
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LEMMA 21. The decapsulation procedure works correctly with
overwhelming probability.
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THEOREM 22. Assume that the signature scheme S is strongly
unforgeable under one-time chosen message attacks, and that for
s <& UZ:;, Gs,r Is pseudorandom. Then the above key
encapsulation mechanism is indistinguishable under chosen
message attacks.
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