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Table : Complexity of α-approximations to SVP.
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We define below a problem called learning with errors (LWE). The
idea is that we are given positive integers q and n, several (a, b′)
with uniformly and independently chosen a←− Zn

q and b′ ∈ Zq,
and want to find u ∈ Zn

q under the guarantee that the errors

v = b′ − a ⋆ u ∈ Zq

follow a Gaussian distribution.
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For a positive integer n and positive real r, the Gaussian function

γ
(n)
r is

γ
(n)
r : Rn −→ R,

x 7−→ e−π(‖x‖/r)2 .

The total volume of Rn under γ
(n)
r is

∫

Rn

γ(n)r (x)dx = rn.

Thus we can define the continuous Gaussian distribution G(n)r on
Rn by its density ρ

(n)
r (x) = r−n · γ(n)r (x). Then

G(n)r (A) = r−n
∫

A ρ
(n)
r (x)dx for a measurable set A ⊆ Rn is the

probability that some x ∈ A is chosen if x←− G(n)r . We abbreviate
D

s,G(1)
r

as Ds,r.
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Definition 1. Let q, r : N −→ R with integral q(n) ≥ 2 and
r(n) > 0 for all n. An algorithm solves the learning with errors
problem LWEs,r if it determines s ∈ Zn

q(n) with overwhelming
probability, given access to any number, polynomial in n, of
samples (a, b) ∈ Zn

q(n) × T according to Ds,r.
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Stage 1: reduction (n/r)-GapSVP ≤p LWE,

Stage 2: reduction LWE ≤p DLWE,

Stage 3: LWE-based cryptosystem.
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Definition 2. For a function α : N −→ R with α(n) ≥ 1 for all
n, we define the α-gap shortest vector problem α-GapSVP as
follows. Input is a basis A of an n-dimensional lattice L and a
positive real number d. The answer is

{

yes if λ1(L) ≤ d,

no if λ1(L) ≥ α(n) · d.

When d < λ1(L) < α(n) · d, any answer is permitted.
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Definition 3. For functions α, β : N −→ R with
β(n) ≥ α(n) ≥ 1 for all n, we define the β-to-α-gap shortest
vector problem α-to-β-GapSVP as follows. Input is a basis A of an
n-dimensional lattice L in Rn with GSO (a∗1, . . . , a

∗
n) and a

positive integer d so that

i. λ1(L) ≤ β(n),

ii. ‖a∗i ‖ ≥ 1 for 1 ≤ i ≤ n,

iii. 1 ≤ d ≤ β(n)/α(n).

The answer is, as in Definition 2,

{

yes if λ1(L) ≤ d,

no if λ1(L) ≥ α(n) · d.
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Definition 4. For functions α, β : N −→ R with
β(n) ≥ α(n) ≥ 1 for all n, we define the β-to-α-gap shortest
vector problem α-to-β-GapSVP as follows. Input is a basis A of an
n-dimensional lattice L in Rn with GSO (a∗1, . . . , a

∗
n) and a

positive integer d so that

i. λ1(L) ≤ β(n),

ii. ‖a∗i ‖ ≥ 1 for 1 ≤ i ≤ n,

iii. 1 ≤ d ≤ β(n)/α(n).

The answer is, as in Definition 2,

{

yes if λ1(L) ≤ d,

no if λ1(L) ≥ α(n) · d.
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Lemma 5. For any c, d > 0 and z ∈ Rn with ‖z‖ ≤ d, and
d′ = d

√

cn/ log n, we have

∆(Ud′Bn
,Uz+d′Bn

) ≤ 1− 1

poly(n)
.
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Lemma 6. There is a probabilistic polynomial-time algorithm that
takes as input a basis A of an n-dimensional lattice L and some
r > max{‖a∗i ‖ : 1 ≤ i ≤ n} · ω(

√
logn). As output it produces

samples from a distribution whose statistical distance to GL,r is
negligible in n.
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Definition 7. Let L be an n-dimensional lattice and ǫ > 0. The
smoothing parameter ηǫ(L) is the smallest s so that

ρ
(n)
1/s(L

∗ \ {0}) =
∑

x∈L∗\{0}
ρ
(n)
1/s(x) ≤ ǫ.
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Lemma 8. Let L be an n-dimensional lattice and ǫ, c > 0.

i. If s′ > ηǫ(L), then ρ
(n)
1/s′(L

∗ \ {0}) ≤ ǫ.

ii. ηǫ(c · L) = c · ηǫ(L).
iii. η2−n(L) ≤

√
n

λ1(L∗) .

iv. For any function f with f(n) = ω(
√
logn), there exists a

negligible function ǫ so that ηǫ(n)(Z) ≤ f(n).

v. If 0 < ǫ < 1, r ≥ ηǫ(L) and d ∈ Rn, then

1− ǫ

1 + ǫ
≤ ρ

(n)
r (L+ d)

ρ
(n)
r (L)

≤ 1.
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Proposition 9. Let γ, ǫ, q : N −→ R>0 be functions with
γ(n) < 1, ǫ negligible, and q(n) ≥ 2 an integer for all n. There
exists a reduction R that takes as input a basis A of a lattice
L ⊆ Rn, real r ≥

√
2q(n) · ηǫ(n)(L∗) and z ∈ Rn with

d(z, L) ≤ γ(n)q(n)/
√
2r < λ1(L)/2. It makes use of two

subroutines W and D, where W solves LWEq(n),γ(n) using
polynomially in n many samples, and D generates samples from
GL∗,r. The output is with overwhelming probability (the unique)
x ∈ L closest to z.
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Algorithm 10. Reduction from β-to-α-GapSVP to LWE.

Input: A basis A of an n-dimensional lattice L, and d ≥ 1.
Output: “yes” or “no”.

1. Choose a large N , polynomial in n.

2. Do step 3 through 7 N times.

3. d′ ←− d ·
√

n/(4 log n).

4. Choose w uniformly at random in the ball
d′ · Bn = {u ∈ Rn : ‖u‖ ≤ d′}.

5. x←− w sremL.
6. Call the reduction R from Proposition 9 with input A, x and

r =
q
√
2n

αd
.

The sampler for GL∗,r is implemented by the algorithm from
Lemma 6 on the reversed dual basis D of L∗. Let v be the
output of R.

7. If v 6= x− w, then return “yes”.
8. Return “no”. 15/33



Theorem 11. Let α, β, γ, q : N −→ R>0 be such that γ(n) < 1,
α(n) ≥ n/(γ(n)

√
logn), β(n) ≥ α(n), q(n) ∈ Z, and

q(n) ≥ β(n) ·ω(
√

n−1 logn) for all n. Then Algorithm 10 provides
a probabilistic polynomial time reduction from solving worst-case
β-to-α-GapSVP with overwhelming probability to solving
LWEq(n),γ(n) with polynomially in n many samples.
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Lemma 12. Let q, α : N −→ R with 0 < α(n) < 1 and all prime
factors p of the squarefree n-bit integer q(n) satisfying
ω(
√
logn)/α(n) ≤ p ≤ poly(n). Then there is a probabilistic

polynomial-time reduction from solving LWEq(n),α with
overwhelming probability to distinguishing between Ds,α and
U(Zn

q(n) ×T) for unknown s ∈ Zn
q(n) with overwhelming advantage.
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Lemma 13. Let q : N −→ N≥2, let C be a distribution on T, and
Un = UZn

q(n)×T
. There is a probabilistic polynomial time reduction

from distinguishing between Ds,C and Un for an arbitrary s ∈ Zn
q(n)

with overwhelming advantage to distinguishing between Dt,C and
Un for uniformly random t←− Zn

q(n) with nonnegligible advantage.
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For simplicity we write q instead of q(n). We now construct a
trapdoor function based on lattices. For starters, we consider
matrices A ∈ Zn×ℓ

q and their (left) kernel

lkerA = {x ∈ Zn
q : xA = 0 in Zℓ

q}.

We always have 0 = (0, . . . , 0) ∈ kerA. Notions like kernel and
rank are well understood when q is prime, so that Zq is a field. For
general q, we have following bound.
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Lemma 14. Let ℓ ≥ n ≥ 1, q ≥ 2, δ > 0, and

p = prob{lkerA 6= {0} : A←−− U
Zn×ℓ
q
}.

Then p < qn · 2−ℓ.
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Given q and A ∈ Zn×ℓ
q , we define two lattices:

Λ(A) = {x ∈ Qℓ : q · x ∈ Zℓ, ∃s ∈ Zn
q q · x = sA in Zℓ

q},
Λ⊥(A) = {y ∈ Zℓ : Ay = 0 in Zn

q }.

Then Zℓ ⊆ Λ(A) and qZℓ ⊆ Λ⊥(A), and the two lattices are duals
of each other.
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We use an algorithm that generates an almost uniform A together
with a “trapdoor” basis T of Λ⊥(A), whose vectors are fairly
short.

Fact 15. There is a probability polynomial-time algorithm which
on input n in unary, odd q ≥ 3, and ℓ ≥ 6n log2 q with ℓ ∈ poly(n),
outputs a pair (A,T ) of matrices with the following properties.

i. A ∈ Zn×ℓ
q is distributed within negligible (in n) statistical

distance from uniform,

ii. T ∈ Zℓ×ℓ is a basis of Λ⊥(A),

iii. there is some C ∈ O(
√

n log2 q) so that each row of the GSO
basis T ∗ has norm at most C.
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We now have the following trapdoor function, including the family
{gA : Zn

q −→ Tℓ
q′}n∈N, where we leave out the argument n in most

places. The integers q, q′ ≥ 2 and real r > 0 are further
parameters.

◮ gen: Run the algorithm from Fact 15 to generate a function
index A ∈ Zn×ℓ

q and a trapdoor basis T ∈ Zℓ×ℓ.

◮ eval(A, s): Obtain x←− G(ℓ)r and output

b = gA(s, x) = ⌊(sA)/q + x⌉q′ ∈ Tℓ
q′ . (16)

◮ inv(T, z): Run the nearest hyperplane algorithm with input z
to find some y ∈ Λ(A) with ‖z − y‖ ≤ 2n−1d(z,Λ(A)).
Compute s ∈ Zn

q with (sA)/q = y in T.
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Theorem 17. Let A ∈ An×ℓ
q , q′ ≥ 2C

√
ℓ, and

r−1 ≥ C · ω(√logn). For any s ∈ Zn
q , the algorithm inv, on input

(T, b) with b = ⌊(sA)/q + x⌉q′ ∈ Tℓ
q′ , outputs s with overwhelming

probability over the choice of x←− G(ℓ)r .
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◮ Correctness. For every s ∈ Dn and b←− ga(s), ver(a, s, b)
accepts with overwhelming probability over the random
parameter x ∈ Xn.

◮ Unique preimage. For every b ∈ Rn there is at most one
s ∈ Dn so that ver(a, s, b) accepts.

◮ Findable preimage. For every s ∈ Dn and b ∈ Rn with
ver(a, s, b) accepting, we have inv(t, b) = s.
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Peikert cryptosystem key generation 18.

Input: n in unary.
Output: Public key pk and secret key sk.

1. U ←− Zn×ℓ
q .

2. For 1 ≤ i ≤ k and b ∈ {0, 1} do
3. (Ai,b, Ti,b)←− T. gen(n).

4. Output pk = ({Ai,b : 1 ≤ i ≤ k, b ∈ {0, 1}}, U)
and sk = (T1,0, T1,1).
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Peikert cryptosystem encapsulation 19.

Input: pk.
Output: encap(pk).

1. (S.pk, S.sk)←− S. gen(n).

2. y ←− {0, 1}j , s←− Zn
q uniformly, x0 ←− G(j)r .

3. b0 ←− ⌊(sU)/q + x0 + y/2⌉q′ ∈ Tℓ
q′ .

4. For 1 ≤ i ≤ k do.

5. indent bi ←− T. eval(Ai, (s.pk)i, s) ∈ Tℓ
q′ .

6. b←− (b0, b1, . . . , bk) ∈ T
kℓ+j

q
′ .

7. σ ←− S. sign(S.sk, b).

8. Output τ = (S.pk, b, σ).
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Peikert cryptosystem decapsulation 20.

Input: sk, τ .
Output: an element of {0, 1}ℓ or “failure”.

1. Write b = (b0, b1, . . . , bk) with b0 ∈ T
j
q′ and bi ∈ Tℓ

q′ for
1 ≤ i ≤ k. If b cannot be parsed in this way, then return
“failure”.

2. Verify the signature by running S. ver on τ . If this is rejected,
then return “failure”.

3. s←− T. inv(T1,(S.sk)1 , b1) ∈ Zn
q .

4. For 1 ≤ i ≤ k do

5. Run T. ver on (Ai,S.pk, s, bi). If T. ver rejects, then return
“failure”.

6. h←− b0 − (sU)/q ∈ Tj = [0, 1)j.

7. For 1 ≤ i ≤ j do 8–9

8. yi ←− 1.

9. If hi ∈ [0, 1/4) ∪ [3/4, 1) then yi ←− 0.
10. Return y = (y1, . . . , yj) ∈ {0, 1}j .
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Lemma 21. The decapsulation procedure works correctly with
overwhelming probability.

1/33



Theorem 22. Assume that the signature scheme S is strongly
unforgeable under one-time chosen message attacks, and that for
s←− UZn

q
, Gs,r is pseudorandom. Then the above key

encapsulation mechanism is indistinguishable under chosen
message attacks.
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