9. Exercise sheet
Hand in solutions until Wednesday, 22 January 2014, 23:59

Exercise 9.1 (Zero-Knowledge). (12 points)
Read Quisquater, Quisquater, Quisquater, Quisquater, Guillou, Guillou, Guillou, Guillou, Guillou, Guillou, Guillou & Berson (1989) to one of your children. Alternatively take one of your fellow students.

(i) Write down the protocol in a form appropriate for computer science students rather than for children. 4

(ii) Prove for this protocol the following three properties:
- Completeness: If the prover’s claim is true, the verification returns true — always. 2
- Soundness: If the prover’s claim is false, the verification fails — with high probability. 2
- Zero-knowledge: The verifier does not learn anything about the private information. 4

Exercise 9.2 (Usage of ZK). (8+3 points)
There is a theorem that says that for any (first-order) logical statement \(\varphi \) there is a zero-knowledge proof where PAULA claims the truth of \(\varphi \) and convinces VICTOR of that without revealing a truth assignment to the variables occurring in \(\varphi \).

(i) Explain how to use that to indentify PAULA under the assumption that VICTOR has her certificate including, say, a public ElGamal encryption key. 4

Why is this approach problematic? +3

(ii) What kind of statement should the cloud prove to the user regarding verifiability of a computation? 4
Exercise 9.3 \((\mathcal{NP} \subseteq \mathcal{IP})\). (4 points)

Let \(X\) be a problem (language) in \(\mathcal{NP}\). Describe a one-round interactive proof for it and show that it is complete and sound.

Note: The previous proof cannot be (computational) zero-knowledge. To achieve that you would need a commitment scheme, a zero-knowledge proof for one NP-complete problem and a stronger reduction notion than usual to enable transforming problems to the reference problem (as usual) and back (this is the extra).

References