Cryptography, winter 2013/2014
 Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

1. Exercise sheet
 Hand in solutions until Saturday, 02 November 2013, 23:59:59

Reminder.

- For the course we remind you of the following dates:
- Lectures: Monday and Thursday 13:00h-14:30h sharp, b-it bitmax.
- Tutorial: Monday 14:45h-16:15h, b-it bitmax.
- A word on the exercises. They are important. Of course, you know that. In order to be admitted to the exam it is necessary that you earned at least 50% of the credits. You need 50% of the marks on the final exam to pass the course. If you do, then as an additional motivation, you will get a bonus for the final exam if you attended the tutorial regularly and earned more than 70% or even more than 90% of the credits.

Exercise 1.1 (The Extended Euclidean Algorithm).
Integers: We can add, subtract and multiply them. And there is a division with remainder: Given any $a, b \in \mathbb{Z}$ with $b \neq 0$ there is a quotient $q \in \mathbb{Z}$ and a remainder $r \in \mathbb{Z}$ such that $a=q \cdot b+r$ and $0 \leq r<|b|$. (We write a quo $b:=q$, a rem $b:=r \in \mathbb{Z}$. If we want to calculate with the remainder in its natural domain we write $a \bmod b:=r \in \mathbb{Z}_{b}$.) Using that we give an answer to the problem to find $s, t, d \in \mathbb{Z}$ with $s a+t b=d$ and $d=\operatorname{gcd}(a, b)$.

We start with one example: Consider $a=35 \in \mathbb{Z}$ and $b=22 \in \mathbb{Z}$. Our aim is to find $s, t \in \mathbb{Z}$ such that $s a+t b$ is positive and as small as possible. By taking $s_{0}=1$ and $t_{0}=0$ we get $s_{0} a+t_{0} b=a$ (identity ${ }_{0}$) and by taking $s_{1}=0$ and $t_{1}=1$ we get $s_{1} a+t_{1} b=b$ (identity ${ }_{1}$). Given that we can combine the two identities with a smaller outcome if we use $a=q_{1} b+r_{2}$ with r smaller than b (in a suitable sense); namely we form 1 (identity $\left.{ }_{0}\right)-q_{1}\left(\right.$ identity $\left._{1}\right)$ and obtain

$$
\underbrace{\left(s_{0}-q_{1} s_{1}\right)}_{=: s_{2}} a+\underbrace{\left(t_{0}-q_{1} t_{1}\right)}_{=: t_{2}} b=\underbrace{a-q_{1} b}_{=r_{2}} .
$$

We arrange this in a table and continue with identity ${ }_{1}$ and the newly found identity $_{2}$ until we obtain 0 . This might be one step more than you think necessary, but the last identity is very easy to check and so gives us a cross-check of
the entire calculation. For the example we obtain:

i	r_{i}	q_{i}	s_{i}	t_{i}	comment
0	$a=35$		1	0	$1 a+0 b=35$
1	$b=22$	1	0	1	$0 a+1 b=22,35=1 \cdot 22+13$
2	13	1	1	-1	$1 a-1 b=13,22=1 \cdot 13+9$
3	9	1	-1	2	$-1 a+2 b=9,13=1 \cdot 9+4$
4	4	2	2	-3	$2 a-3 b=4,9=2 \cdot 4+1$
5	1	4	-5	8	$-5 a+8 b=1,4=4 \cdot 1+0$
6	0		22	-35	$22 a-35 b=0$, DONE, check ok!

We read off (marked in blue) that $1=-5 a+8 b$ and the greatest common divisor $\operatorname{gcd}(a, b)$ of a and b is 1 . This implies that $8 \cdot 22=1$ in \mathbb{Z}_{35}, in other words: the multiplicative inverse of 22 , often denoted 22^{-1} or $\frac{1}{22}$, in \mathbb{Z}_{35}, the set of integers modulo 35 is 8 . (Brute force is no solution! That is, guessing or trying all possibilities is not allowed here!)
(i) Find $s, t, d \in \mathbb{Z}$ such that $s \cdot 14+t \cdot 36=d=\operatorname{gcd}(14,36)$.
(ii) Find an integer $s \in \mathbb{Z}$ such that $s \cdot 17=1$ in \mathbb{Z}_{35}.

Actually, there are other things which can be added, subtracted, multiplied, and allow a division with remainder. A concrete example is the set $\mathbb{Z}_{2}[X]$ of univariate polynomials with coefficients in \mathbb{Z}_{2}. (The elements of \mathbb{Z}_{2} are 0 and 1 , addition and multiplication are modulo 2 , so $1+1=0$. The expression $1+X+X^{3}+X^{4}+X^{8}$ is a typical polynomial with coefficients in \mathbb{Z}_{2}; note that the coefficients know that ' $1+1=0^{\prime}$ where they live. It's square is $1+X^{2}+$ $X^{6}+X^{8}+X^{16}$, any occurrence of $1+1$ during squaring yields 0 .)
(iii) Find $s, t \in \mathbb{Z}_{2}[X]$ such that $s \cdot(1+X)+t \cdot\left(1+X+X^{3}+X^{4}+X^{8}\right)=1$.

Exercise 1.2.

Let $m \in \mathbb{N}_{\geq 1}$ be a positive integer. Show that the set

$$
\mathbb{Z}_{m}^{\times}=\left\{a \in \mathbb{Z}_{m} \mid \operatorname{gcd}(a, m)=1\right\}
$$

with multiplication modulo m is a group.

Exercise 1.3 (Diffie Hellman key exchange).
Perform a toy example of a Diffie Hellman key exchange. Fix $p=47$ and $g=$ $2 \in G=\mathbb{Z}_{p}^{\times}$. For all the exponentiations use the repeated squaring algorithm from the lecture.
(i) Show that the order of g is 23 , i.e. $g^{23}=1$ but $g^{k} \neq 1$ for $1 \leq k<23$.
[If you are clever then you only need to calculate g^{23}.]
(ii) Take $x=7 \in G$ and calculate $h_{A}:=g^{x}$.
(iii) Take $y=8 \in G$ and calculate $h_{B}:=g^{y}$.
(iv) Now compute h_{B}^{x} and h_{A}^{y} and compare.

