Cryptography, winter 2013/2014 Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

1. Exercise sheet Hand in solutions until Saturday, 02 November 2013, 23:59:59

Reminder.

• For the course we remind you of the following dates:

- Lectures: Monday and Thursday 13:00h-14:30h sharp, b-it bitmax.
- Tutorial: Monday 14:45h-16:15h, b-it bitmax.
- A word on the exercises. They are important. Of course, you know that. In order to be admitted to the exam it is necessary that you earned at least 50% of the credits. You need 50% of the marks on the final exam to pass the course. If you do, then as an additional motivation, you will get a bonus for the final exam if you attended the tutorial regularly **and** earned more than 70% or even more than 90% of the credits.

Exercise 1.1 (The Extended Euclidean Algorithm). (8 points)

Integers: We can add, subtract and multiply them. And there is a division with remainder: Given any $a, b \in \mathbb{Z}$ with $b \neq 0$ there is a quotient $q \in \mathbb{Z}$ and a remainder $r \in \mathbb{Z}$ such that $a = q \cdot b + r$ and $0 \leq r < |b|$. (We write $a \operatorname{quo} b := q$, $a \operatorname{rem} b := r \in \mathbb{Z}$. If we want to calculate with the remainder in its natural domain we write $a \operatorname{mod} b := r \in \mathbb{Z}_b$.) Using that we give an answer to the problem to find $s, t, d \in \mathbb{Z}$ with sa + tb = d and $d = \operatorname{gcd}(a, b)$.

We start with one example: Consider $a = 35 \in \mathbb{Z}$ and $b = 22 \in \mathbb{Z}$. Our aim is to find $s, t \in \mathbb{Z}$ such that sa + tb is positive and as small as possible. By taking $s_0 = 1$ and $t_0 = 0$ we get $s_0a + t_0b = a$ (identity₀) and by taking $s_1 = 0$ and $t_1 = 1$ we get $s_1a + t_1b = b$ (identity₁). Given that we can combine the two identities with a smaller outcome if we use $a = q_1b + r_2$ with r smaller than b (in a suitable sense); namely we form 1(identity₀) - q_1 (identity₁) and obtain

$$\underbrace{(s_0-q_1s_1)}_{=:s_2}a+\underbrace{(t_0-q_1t_1)}_{=:t_2}b=\underbrace{a-q_1b}_{=r_2}.$$

We arrange this in a table and continue with identity₁ and the newly found identity₂ until we obtain 0. This might be one step more than you think necessary, but the last identity is very easy to check and so gives us a cross-check of

i	r_i	q_i	s_i	t_i	comment
0	a = 35		1	0	1a + 0b = 35
1	b = 22	1	0	1	$0a + 1b = 22,35 = 1 \cdot 22 + 13$
2	13	1	1	-1	$1a - 1b = 13, 22 = 1 \cdot 13 + 9$
3	9	1	-1	2	$-1a + 2b = 9, 13 = 1 \cdot 9 + 4$
4	4	2	2	-3	$2a - 3b = 4, 9 = 2 \cdot 4 + 1$
5	1	4	- 5	8	$-5a + 8b = 1, 4 = 4 \cdot 1 + 0$
6	0		22	-35	22a - 35b = 0, DONE, check ok!

the entire calculation. For the example we obtain:

We read off (marked in blue) that 1 = -5a + 8b and the greatest common divisor gcd(a, b) of a and b is 1. This implies that $8 \cdot 22 = 1$ in \mathbb{Z}_{35} , in other words: the multiplicative inverse of 22, often denoted 22^{-1} or $\frac{1}{22}$, in \mathbb{Z}_{35} , the set of integers modulo 35 is 8. (Brute force is no solution! That is, guessing or trying all possibilities is not allowed here!)

(i) Find $s, t, d \in \mathbb{Z}$ such that $s \cdot 14 + t \cdot 36 = d = \gcd(14, 36)$.

(ii) Find an integer $s \in \mathbb{Z}$ such that $s \cdot 17 = 1$ in \mathbb{Z}_{35} .

Actually, there are other things which can be added, subtracted, multiplied, and allow a division with remainder. A concrete example is the set $\mathbb{Z}_2[X]$ of univariate polynomials with coefficients in \mathbb{Z}_2 . (The elements of \mathbb{Z}_2 are 0 and 1, addition and multiplication are modulo 2, so 1 + 1 = 0. The expression $1 + X + X^3 + X^4 + X^8$ is a typical polynomial with coefficients in \mathbb{Z}_2 ; note that the coefficients know that '1 + 1 = 0' where they live. It's square is $1 + X^2 + X^6 + X^8 + X^{16}$, any occurrence of 1 + 1 during squaring yields 0.)

(iii) Find
$$s, t \in \mathbb{Z}_2[X]$$
 such that $s \cdot (1+X) + t \cdot (1+X+X^3+X^4+X^8) = 1$.

Exercise 1.2.

(2 points)

Let $m \in \mathbb{N}_{\geq 1}$ be a positive integer. Show that the set

$$\mathbb{Z}_m^{\times} = \{ a \in \mathbb{Z}_m \mid \gcd(a, m) = 1 \}$$

with multiplication modulo m is a group.

2

4

2

+1

1

1

2

Exercise 1.3 (Diffie Hellman key exchange). (6+1 points)

Perform a toy example of a Diffie Hellman key exchange. Fix p = 47 and $g = 2 \in G = \mathbb{Z}_p^{\times}$. For all the exponentiations use the repeated squaring algorithm from the lecture.

(i) Show that the order of g is 23, i.e. $g^{23} = 1$ but $g^k \neq 1$ for $1 \le k < 23$. [If you are clever then you only need to calculate g^{23} .]

- (ii) Take $x = 7 \in G$ and calculate $h_A := g^x$.
- (iii) Take $y = 8 \in G$ and calculate $h_B := g^y$.
- (iv) Now compute h_B^x and h_A^y and compare.