
Cryptography, winter 2013/2014
PROF. DR. JOACHIM VON ZUR GATHEN, DR. DANIEL LOEBENBERGER

5. Exercise sheet

Hand in solutions until Saturday, 30 November 2013, 23:59:59

Exercise 5.1 (Reductions for RSA). (7+1030 points)

We consider as an attacker a (probabilistic) polynomial-time computer A. A

knows pk = (N, e) and y = encpk(x). There are several notions of “breaking
RSA”. A might be able to compute from its knowledge one of the following
data.

B1: the plaintext x,

B2: the hidden part d of the secret key sk = (N, d),

B3: the value ϕ(N) of Euler’s totient function,

B4: a factor p (and q) of N .

If A and B are two computational problems (given by an input/output spec-
ification), then a random polynomial-time reduction from A to B is a random
polynomial-time algorithm for A which is allowed to make calls to an (un-
specified) subroutine for B. The cost of such a call is the combined input plus
output length in the call. If such a reduction exists, we write

A ≤p B.

(i) Show that B1 ≤p B2. 2

(ii) Show that B2 ≤p B3. 2

(iii) Show that B3 ≤p B4. 2

(iv) Which problem is the easiest one? Which one is most difficult? 1

(v) Show that additionally we have B4 ≤p B3. Hint: Consider the quadratic +2
polynomial (x− p)(x− q) ∈ Z[x].

(vi) Argue that we also have B3 ≤p B2. +4

(vii) Resolve the question whether also B2 ≤p B1 or equivalently whether +1024
B4 ≤p B1. Warning: This is an open research problem...



2 Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

Exercise 5.2 (RSA bad choice). (6 points)

Show why the 35-bit integer 23360947609 is a particularly bad choice for N =
pq.

We claim that two prime numbers which are really close to each other are bad
choices for RSA system. To show this we use Fermat’s factorization method
based on the fact: If N = pq with p > q being odd primes, then N = (p+q

2
)2 −

(p−q

2
)2.

(i) Explain how you can use this fact to find prime factors of N .4

(ii) Do it for N = 23360947609.2

Exercise 5.3 (Primality Testing). (10+10 points)

In this exercise we put hands on the primality tests discussed in the lecture.

(i) Implement the Fermat test in a programming language of your choice.3

(ii) Implement the Strong pseudoprimality test in a programming language3
of your choice.

Now, let’s run it! Execute the Strong pseudoprimality test with

(iii) N = 41, x = 2.1

(iv) N = 57, x = 37.1

(v) N = 1105, x = 47.1

(vi) N = 1105, x = 2.1

With our implementation running, we can now perform several experiments.

(vii) Compute the number of Fermat liars for N = 35, i.e. the number of+2
choices x ∈ ZN for which the Fermat test returns “N is possibly prime”.

(viii) Compute the number of Strong liars for N = 35, i.e. the number of+2
choices x ∈ ZN for which the Strong primality test returns “N is probably
prime”.

(ix) Do the same for N = 561.+2

(x) Perform more experiments.+2

(xi) Interpret the results.+2


