Cryptography, winter 2013/2014

PROF. DR. JOACHIM VON ZUR GATHEN, DR. DANIEL LOEBENBERGER

5. Exercise sheet Hand in solutions until Saturday, 30 November 2013, 23:59:59

Exercise 5.1 (Reductions for RSA).

(7+1030 points)

We consider as an attacker a (probabilistic) polynomial-time computer \mathcal{A} . \mathcal{A} knows $\mathsf{pk} = (N, e)$ and $y = \mathsf{enc}_{\mathsf{pk}(x)}$. There are several notions of "breaking RSA". \mathcal{A} might be able to compute from its knowledge one of the following data.

 B_1 : the plaintext x,

 B_2 : the hidden part d of the secret key sk = (N, d),

 B_3 : the value $\varphi(N)$ of Euler's totient function,

polynomial $(x-p)(x-q) \in \mathbb{Z}[x]$.

 B_4 : a factor p (and q) of N.

If A and B are two computational problems (given by an input/output specification), then a random polynomial-time reduction from A to B is a random polynomial-time algorithm for A which is allowed to make calls to an (unspecified) subroutine for B. The cost of such a call is the combined input plus output length in the call. If such a reduction exists, we write

$$A \leq_p B$$
.

(i)	Show that $B_1 \leq_p B_2$.	2
(ii)	Show that $B_2 \leq_p B_3$.	2
(iii)	Show that $B_3 \leq_p B_4$.	2
(iv)	Which problem is the easiest one? Which one is most difficult?	1
(v)	Show that additionally we have $B_4 \leq_p B_3$. Hint: Consider the quadratic	+2

(vi) Argue that we also have $B_3 \leq_p B_2$.

(vii) Resolve the question whether also $B_2 \leq_p B_1$ or equivalently whether +1024 $B_4 \leq_p B_1$. Warning: This is an open research problem...

2

3

3

1

1

+2

+2

+2

Exercise 5.2 (RSA bad choice).

(6 points)

Show why the 35-bit integer 23360947609 is a particularly bad choice for N =pq.

We claim that two prime numbers which are really close to each other are bad choices for RSA system. To show this we use Fermat's factorization method based on the fact: If N = pq with p > q being odd primes, then $N = (\frac{p+q}{2})^2$ $\left(\frac{p-q}{2}\right)^2$.

- 4 (i) Explain how you can use this fact to find prime factors of N.
 - (ii) Do it for N = 23360947609.

Exercise 5.3 (Primality Testing).

(10+10 points)

In this exercise we put hands on the primality tests discussed in the lecture.

- (i) Implement the Fermat test in a programming language of your choice.
 - (ii) Implement the Strong pseudoprimality test in a programming language of your choice.

Now, let's run it! Execute the Strong pseudoprimality test with

(iii)
$$N = 41, x = 2.$$

(iv)
$$N = 57, x = 37.$$

$$\boxed{1}$$
 (v) $N = 1105, x = 47.$

[1] (vi)
$$N = 1105, x = 2.$$

With our implementation running, we can now perform several experiments.

- (vii) Compute the number of Fermat liars for N=35, i.e. the number of choices $x \in \mathbb{Z}_N$ for which the Fermat test returns "N is possibly prime".
- (viii) Compute the number of Strong liars for N=35, i.e. the number of choices $x \in \mathbb{Z}_N$ for which the Strong primality test returns "N is probably prime".
- (ix) Do the same for N = 561.
- +2 (x) Perform more experiments.
- +2 (xi) Interpret the results.