Cryptography, winter 2013/2014

Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

6. Exercise sheet

Hand in solutions until Saturday, 07 December 2013, 23:59:59

Exercise 6.1 (An example of Pollard's ρ method).
(i) Complete the table below, which represents a run of Pollard's ρ algorithm for $N=100181$ and the initial value $x_{0}=399$, up to $i=6$.

i	x_{i} rem N	x_{i} rem 17	y_{i} rem N	y_{i} rem 17	$\operatorname{gcd}\left(x_{i}-y_{i}, N\right)$
0	399	8	399	8	100181
1	\ldots	\ldots	\ldots	\ldots	\ldots

(ii) The smallest prime divisor of N is 17 . Describe the idea of the algorithm by looking at x_{i} rem 17 and y_{i} rem 17 and in particular, why we stopped at $i=6$.
(iii) Complete the factorization of N using Pollard's ρ algorithm.

Exercise 6.2 (Decryption with AES).
(i) Given the output of the function SubBytes, how can you find the corresponding input?
(ii) Verify that the product of the polynomial $d=0 \mathrm{~B} y^{3}+0 \mathrm{D} y^{2}+09 y+0 \mathrm{E}$ and the polynomial $c=03 y^{3}+01 y^{2}+01 y+02$ is equal to 1 in the ring $\mathbb{F}_{256}[y] /\left\langle y^{4}+1\right\rangle$.
(iii) Formulate the AES decryption algorithm.

Exercise 6.3 (One round of AES).

In this exercise we compute the first round of AES by hand. We start with an input matrix

$$
\left(\begin{array}{llll}
01 & 11 & 21 & 31 \\
02 & 12 & 22 & 32 \\
03 & 13 & 23 & 33 \\
04 & 14 & 24 & 34
\end{array}\right)
$$

and a key

$$
\left(\begin{array}{cccc}
A A & B B & C C & D D \\
A A & B B & C C & D D \\
A A & B B & C C & D D \\
A A & B B & C C & D D
\end{array}\right)
$$

where all entries are in hexadecimal representation.
(iii) After step (ii) the matrix looks like

$$
\left(\begin{array}{cccc}
* & * & 55 & C E \\
C 2 & D 3 & 28 & D F \\
D 3 & C 2 & D F & 28 \\
E 4 & 79 & 9 B & 1 E
\end{array}\right)
$$

Compute ShiftRows of this matrix.
(iv) Compute MixColumns for the last column of the matrix that results in (iii).

