Cryptography, winter 2013/2014 Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

6. Exercise sheet Hand in solutions until Saturday, 07 December 2013, 23:59:59

Exercise 6.1 (An example of Pollard's ρ method). (7 point

(i) Complete the table below, which represents a run of Pollard's ρ algorithm 3 for N = 100181 and the initial value $x_0 = 399$, up to i = 6.

i	$x_i \operatorname{rem} N$	$x_i \operatorname{rem} 17$	$y_i \operatorname{rem} N$	$y_i \operatorname{rem} 17$	$gcd(x_i - y_i, N)$
0	399	8	399	8	100181
1					

- (ii) The smallest prime divisor of *N* is 17. Describe the idea of the algorithm 2 by looking at x_i rem 17 and y_i rem 17 and in particular, why we stopped at i = 6.
- (iii) Complete the factorization of *N* using Pollard's ρ algorithm.

Exercise 6.2 (Decryption with AES).

- (i) Given the output of the function SubBytes, how can you find the corresponding input?
- (ii) Verify that the product of the polynomial $d = 0By^3 + 0Dy^2 + 09y + 0E$ 2 and the polynomial $c = 03y^3 + 01y^2 + 01y + 02$ is equal to 1 in the ring $\mathbb{F}_{256}[y]/\langle y^4 + 1 \rangle$.
- (iii) Formulate the AES decryption algorithm.

2

4

(8 points)

Exercise 6.3 (One round of AES).

(12 points)

In this exercise we compute the first round of AES by hand. We start with an input matrix

	/01	_]	11	21	31	
	02]	12	21 22 23 24	32	
	03]	13	23	33	
	04	: 1	14	24	34/	
	`				,	
1	Δ	R	R	CC	DI	ר
1	Л	D	D	$\overline{0}$	DI	/

and a key

2

4

2

4

(AA)	BB	CC	DD DD DD DD
AA	BB	CC	DD
AA	BB	CC	DD
AA	BB	CC	DD

where all entries are in hexadecimal representation.

(i) Compute AddRoundKey for the first two bytes.

- (ii) Compute SubByte for the two bytes that result in (i).
- (iii) After step (ii) the matrix looks like

$$\begin{pmatrix} * & * & 55 & CE \\ C2 & D3 & 28 & DF \\ D3 & C2 & DF & 28 \\ E4 & 79 & 9B & 1E \end{pmatrix}$$

Compute ShiftRows of this matrix.

(iv) Compute MixColumns for the last column of the matrix that results in (iii).