Cryptography, winter 2013/2014

PROF. DR. JOACHIM VON ZUR GATHEN, DR. DANIEL LOEBENBERGER

9. Exercise sheet Hand in solutions until Saturday, 11 January 2014, 23:59:59

Exercise 9.1 (Properties of hash functions).	(7 points)	
Let h_1 and h_2 be two hash functions. Let $h=h_1\mid h_2$ be the concatthem.	enation of	
(i) Prove that if at least one of h_1 and h_2 is collision resistant, ther sion resistant.	h is colli-	2
(ii) Determine whether an analogous claim holds for second pre- sistance and inversion resistance, respectively. Prove your claim	0	3
Now assume h is any collision resistant hash function.		
(iii) Is the composition $h \circ h$ necessarily collision resistant?		2
Exercise 9.2 (Energy cost). (0	+4 points)	
Estimate the total energy consumed by performing 2^{128} computations SHA-256 compression function with modern high-end CPUs. Extrapto 10, 20, 30 years from now. Do the same for 2^{256} and 2^{512} such compressions from the same for 2^{256} and 2^{512} such compressions.	polate that	+4
Exercise 9.3 (The ElGamal signature scheme).	(12 points)	

In this exercise you will get some hands-on experience with the ElGamal signature scheme.

Let $p=2^{28}+3$ and g=3 a generator of $G=\mathbb{Z}_p^{\times}$. The injective encoding function $G\to\mathbb{Z}_{p-1}, x\mapsto x^{\star}$ is given by

$$x^* = \begin{cases} 0 & \text{for } x = p - 1 \\ x & \text{else.} \end{cases}$$

Our message m will be the ASCII-string "2014".

(i) Look up the 7-bit ASCII encodings for each letter and concatenate them $\boxed{1}$ for the 28-bit number m.

2

3

Let us take the role of Alice and let a = 100 be our secret key.

- (ii) Choose a random session key k (of at least three digits) and generate a signature for your message m.
- (iii) What is your public key? Use it to verify the signature you just produced.

We will now explore how Eve can sign a given message if additional information is provided.

2 (iv) Alice sends the signed message

$$(m, x, b) = (500, 10296631, 248708422).$$

By accident the secret session key k=787 is revealed. Compute Alice's secret key a.

(v) After this experience, Alice changes her secret key and the public version is now $y=138\,309\,740$. Unfortunately a bug/feature in the random number generator revealed that the same value for k was generated twice in a row. This is known for the signed messages

and

(502, 32067479, 60076072)

Compute Alice's secret key.