Cryptography, winter 2013/2014
Prof. Dr. Joachim von zur Gathen, Dr. Daniel Loebenberger

12. Exercise sheet Hand in solutions until Saturday, 01 February 2014, 23:59:59

Exercise 12.1 (Secure email).	(4 points)	
(i) Send a digitally signed email with the subject		2
World supremacy plans		
to us at		
13ws-crypto-handin@lists.bit.uni-bo	onn.de	
from your personal account. The body of your email mu and the signature must be verifiable and correct. [It is verify this by sending a blind carbon copy (Bcc) to onese	a good idea to	
With Thunderbird we recommend using enigmail ar case make sure to register your key at http://pgp.mi	•	
Choose yourself among this solution and possible others a pgp key pair.	. In any case use	
(ii) Find the fingerprint of your own PGP key. Bring two prantices an identification document to the next tutorial. (Do no with it. Guess, why!)		2
Exercise 12.2 (Security of ElGamal encryption).	(8 points)	
Fix a finite group $G=\langle g \rangle$ with order $d=\#G$, a secret key $a\in \ker A=g^a\in G$.	\mathbb{Z}_d and a public	
(i) Show that ElGamal encryption over G is malleable unctacks.	der key-only at-	4
(ii) Show that ElGamal encryption over G is decipherable ciphertext attacks.	under chosen-	4

Hint: ElGamal encryption enjoys a homomorphic property, namely that for

messages $m_1, m_2 \in G$, we have $\operatorname{enc}_A(m_1) \cdot \operatorname{enc}_A(m_2) = \operatorname{enc}_A(m_1 \cdot m_2)$.

1

1

+4

2

2

+10

Exercise 12.3 (Schnorr identification, example).

(4+4 points)

1

As in the Schnorr signature scheme, we use a subgroup $G \subseteq \mathbb{Z}_p^{\times}$ of small order d inside the much larger group \mathbb{Z}_p^{\times} . Specifically, we take d=1201, p=122503, and g = 11538. Alice uses the Schnorr identification scheme in G.

- (i) Alice's secret exponent is a = 357. Compute her public key A.
- (ii) Alice chooses b = 868. Compute B.
- (iii) Bob issues the challenge r = 501. Compute Alice's response c.
- (iv) Perform Bob's calculations to verify *c*.
- (v) Perform the entire scheme in a computer algebra system of your choice with $2^{1023} \le p < 2^{1024}$ and $2^{159} \le q < 2^{160}$.

Exercise 12.4 (Attack on Schnorr identification).

(4 points)

EVE has intercepted two Schnorr identifications by Alice and now knows (B_1, r_1, c_1) and (B_2, r_2, c_2) . Furthermore, EVE somehow knows $\operatorname{dlog}_q(B_1^k B_2^{-1})$ for some

- (i) Show that Eve can easily compute Alice's secret exponent *a*. [Hint: Look at the case k = 1 first.]
- (ii) EVE knows Alice's software dealer and has purchased the same identification software from him. This way she learned that Alice uses a linear congruential generator to generate her random secret numbers b. Therefore $b_2 = sb_1 + t$ in \mathbb{Z}_q for known values of $q, s \in \mathbb{Z}_q^{\times}$, and $t \in \mathbb{Z}_q$. (The programmer has used q as the modulus for the random generator so that the numbers b_i are automatically in the correct range.) Show how EVE can compute $\mathrm{dlog}_q(B_1^kB_2^{-1})$ for a specific value of k and by (i) also Alice's secret exponent a.

Exercise 12.5 (Teach!).

(0+10 points)

Consider the material covered this winter term. Invent some good questions you would ask in a written exam.