Cryptanalytic world records, summer 2014
 Daniel Loebenberger, Konstantin Ziegler

0. Repetition sheet

Exercise 0.1 (High powers). Compute $3^{98765432101}$ in \mathbb{Z}_{101}.

Exercise 0.2 (Touching \mathbb{F}_{4}). Consider polynomials of degree less than 2 over the field \mathbb{F}_{2}. Define addition and multiplication of them modulo the polynomial $X^{2}+X+1$.
(i) Write down the complete list of elements.
(ii) Write down the addition table.
(iii) Write down the multiplication table.

We can now consider polynomials over $\mathbb{F}_{4}: T^{2}+T+1$ is such a polynomial. Factor it (over \mathbb{F}_{4}).

Exercise 0.3 (Computing in \mathbb{F}_{256}). Let M be your student id. Let

$$
a=M \bmod 256, b=(M \operatorname{div} 256) \bmod 256, \text { and } c=(a+b) \bmod 256
$$

Now interpret a, b and c as elements of \mathbb{F}_{256}. Compute in \mathbb{F}_{256}
(i) $a+b$ (Attention! Usually the result will not be c !),
(ii) $a \cdot b$, and
(iii) $1 / a($ or $1 / b$ in case $a=0)$.

Exercise 0.4 (Computing inverses). If possible compute the inverse
(i) ... of 89 in the ring \mathbb{Z}_{101},
(ii) \ldots of 42 in the ring \mathbb{Z}_{1001},

Give a proof if no inverse exists.

