Cryptanalytic world records, summer 2014

Discrete Logarithms

Dr. Daniel Loebenberger

Algorithm. Baby-step giant-step algorithm for the discrete logarithm.

Input: A cyclic group $G=\langle g\rangle$ with d elements, and a group element $x \in G$.
Output: $\mathrm{dlog}_{g} x$.

1. $m \longleftarrow\lceil\sqrt{d}\rceil$.
2. Baby steps: compute and store $x, x g, x g^{2}, \ldots, x g^{m}$ in a table.
3. Giant steps: compute $g^{m}=x g^{m} \cdot x^{-1}, g^{2 m}, g^{3 m}, \ldots$ until one of them, say $g^{i m}$, equals an element in the table, say $x g^{j}$.
4. Return $i m-j$ in \mathbb{Z}_{d}.

Example

We take a group G with $d=20$ elements. We might have $G=\mathbb{Z}_{20}$ with addition, or $G=\mathbb{Z}_{25}^{\times}$with multiplication, since $\phi(25)=4 \cdot 5$. Let us take the latter representation. Now $g=2 \in G=\mathbb{Z}_{25}^{\times}$is a generator, since $2^{20 / 2}=2^{10}=24 \neq 1$ and $2^{20 / 5}=2^{4}=16 \neq 1$ in G. In order to compute the discrete logarithm of $x=17$, we have $m=\lceil\sqrt{20}\rceil=5$, and perform the following computations.

k	baby steps $x g^{k}$	giant steps $g^{k m}$
0	17	1
1	9	7
2	18	24
3	11	18
4	22	1
5		7
		\cdots

In the third giant step, we find the collision $x g^{2}=18=g^{3.5}$, and hence $\operatorname{dlog}_{2} 17=3 \cdot 5-2=13$. We check that indeed $2^{13}=17$ in \mathbb{Z}_{25}^{\times}.

Theorem
For any group G with d elements, the baby-step giant-step method solves DL_{G} with at most $2 m$ group operations and space for m elements of G, where $m=\lceil\sqrt{d}\rceil$.

Algorithm. Birthday algorithm for discrete logarithm.
Input: A cyclic group $G=\langle g\rangle$ with d elements, and a group element $x \in G$.
Output: $\mathrm{dlog}_{g} x$.

1. $X, Y \longleftarrow \emptyset$.
2. Do step 3 until a collision of X and Y occurs.
3. Choose uniformly at random a bit $b \leftrightarrows\{0,1\}$ and $i \longleftarrow\{0, \ldots, d-1\}$. Add $x g^{i}$ to X if $b=0$ and g^{i} to Y if $b=1$, and remember the index i.
4. If $x g^{i}=g^{j}$ for some $x g^{i} \in X$ and $g^{j} \in Y$, then return $j-i$ in \mathbb{Z}_{d}.

Theorem

The algorithm works correctly as specified. Its expected time is $O(\sqrt{d} \log d)$ multiplications in G, with expected space for $O(\sqrt{d})$ elements of G.

We have a cyclic group $G=\langle g\rangle$ with d elements, and an element $x=g^{a}$ of G. Our task is to calculate $a=\operatorname{dlog}_{g} x$ from g and x. Choose a sequence $b_{0}, b_{1}, \ldots \leftrightarrows\{0,1,2\}$ of uniformly and independently distributed random "trits" b_{k}, choose $u_{0}, v_{0} \leftrightarrows \mathbb{Z}_{d}$ at random and start with $y_{0}=x^{u_{0}} g^{v_{0}}$. Then we calculate y_{1}, y_{2}, \ldots in G by

$$
y_{k}= \begin{cases}x \cdot y_{k-1} & \text { if } b_{k-1}=0 \\ y_{k-1}^{2} & \text { if } b_{k-1}=1 \\ g \cdot y_{k-1} & \text { if } b_{k-1}=2\end{cases}
$$

until we find a collision $y_{i}=y_{j}$ with $i \neq j$.

Algorithm. The Pollard rho algorithm for discrete logarithms.
Input: A cyclic group $G=\langle g\rangle$ of order d, a partition $G=S_{0} \cup S_{1} \cup S_{2}$ into three disjoint parts of roughly equal size, and $x \in G$.
Output: $\mathrm{dlog}_{g} x$, or "failure".

1. Define the iteration function \mathcal{P} by $\mathcal{P}(z, \rho)=\left(z^{*}, \rho^{*}\right)$, where

$$
z, z^{*} \in G, \rho, \rho^{*} \in \mathbb{Z}_{d}[t], \text { and }
$$

$$
z^{*}=\left\{\begin{array}{ll}
x \cdot z & \text { if } z \in S_{0} \\
z^{2} & \text { if } z \in S_{1}, \\
g \cdot z & \text { if } z \in S_{2}
\end{array} \quad \rho^{*}= \begin{cases}\rho+t & \text { if } z \in S_{0} \\
2 \rho & \text { if } z \in S_{1} \\
\rho+1 & \text { if } z \in S_{2}\end{cases}\right.
$$

2. $u_{0}, v_{0} \longleftarrow \mathbb{Z}_{d}, x_{0}, y_{0} \longleftarrow x^{u_{0}} g^{v_{0}}, \sigma_{0}, \tau_{0} \longleftarrow u_{0} t+v_{0}, k \longleftarrow 0$.
3. Do step 4 until $x_{k}=y_{k}$.
4. $k \longleftarrow k+1$. Calculate $x_{k}, y_{k} \in G$ and $\sigma_{k}, \tau_{k} \in \mathbb{Z}_{d}[t]$ by

$$
\left(x_{k}, \sigma_{k}\right) \leftarrow \mathcal{P}\left(x_{k-1}, \sigma_{k-1}\right), \quad\left(y_{k}, \tau_{k}\right) \leftarrow \mathcal{P}\left(\mathcal{P}\left(y_{k-1}, \tau_{k-1}\right)\right)
$$

5. Let $\sigma_{k}=u t+v$ and $\tau_{k}=u^{\prime} t+v^{\prime}$, with $u, u^{\prime}, v, v^{\prime} \in \mathbb{Z}_{d}$. If $\operatorname{gcd}\left(u-u^{\prime}, d\right)=1$ in \mathbb{Z}, then return $\left(v^{\prime}-v\right) \cdot\left(u-u^{\prime}\right)^{-1}$ in \mathbb{Z}_{d}, else return "failure".

Theorem

Let G be a cyclic group of order d. Then the Pollard rho algorithm, with Floyd's trick, finds a discrete logarithm in G with an expected number of $O(\sqrt{d})$ group operations, provided that the sequence $x_{0}, x_{1}, x_{2}, \ldots$ behaves randomly. Space is required for two elements of G and four elements of \mathbb{Z}_{d}.

Example

We have $g=2 \in G=\mathbb{Z}_{25}^{\times}, d=20$, and $x=17$. As suggested above, we use the partition $S_{0}=\{1,2,3,4,6,7,8\}$,
$S_{1}=\{9,11,12,13,14,16,17\}$, and $S_{2}=\{18,19,21,22,23,24\}$ of G, with 7,7 , and 6 elements, respectively. Our random choice is $u_{0}=12$ and $v_{0}=7$, so that $\sigma_{0}=12 t+7$.

k	x_{k}	y_{k}	σ_{k}	τ_{k}
0	8	8	$12 t+7$	$12 t+7$
1	6	23	$4 t+16$	$9 t+14$
2	23	6	$9 t+14$	8
3	16	16	$10 t+14$	$2 t+18$

We find the collision $x_{3}=y_{3}=16$ with $\sigma_{3}=10 t+14$ and $\tau_{3}=2 t+18$ in $\mathbb{Z}_{20}[t]$. Then $u-u^{\prime}=10-2$ and $w=\operatorname{gcd}(8,20)=4 \neq 1$. The algorithm as stated returns "failure".

Example

But we persist and compute $a=\operatorname{dlog}_{2} 17$ as a root of $\sigma_{3}-\tau_{3}$. Namely, $d^{\prime}=d / w=20 / 4=5$, and dividing $\sigma_{3}-\tau_{3}$ by 4 , we have

$$
(10 t+14-(2 t+18)) / 4=(8 t+16) / 4=2 t+4
$$

The quantity called u in the Remark is now $\tilde{u}=8$, and $(\tilde{u} / w)^{-1}=(8 / 4)^{-1}=2^{-1}=3$ in $\mathbb{Z}_{d^{\prime}}=\mathbb{Z}_{5}$. Then

$$
b=\frac{-v}{w} \cdot\left(\frac{u}{w}\right)^{-1}=\frac{-16}{4} \cdot 3=-12=3 \text { in } \mathbb{Z}_{5},
$$

and the possible values for a are $a=b+i d^{\prime}=3+5 i$ in \mathbb{Z}_{20}, for $0 \leq i<4$. Thus $a \in\{3,8,13,18\}$, and a check reveals that $\operatorname{dlog}_{2} 17=13$.

Lemma

Suppose that $d=q_{1} q_{2}$ with coprime q_{1} and q_{2}, and that $a_{i}=\operatorname{dlog}_{g_{i}} x_{i}$ in $\mathbb{Z}_{d / q_{i}}$, where $g_{i}=g^{d / q_{i}}$ and $x_{i}=x^{d / q_{i}} \in \pi_{d / q_{i}}(G)$, for $i=1,2$. Then $\operatorname{dlog}_{g} x=a_{i}$ in $\mathbb{Z}_{q_{i}}$ for $i=1,2$.

Example

We have $G=\mathbb{Z}_{25}^{\times}=\langle 2\rangle$ with $d=\# G=20=4 \cdot 5$, so that $q_{1}=4$ and $q_{2}=5$, and $x=17 \in G$. Additively, μ_{5} maps \mathbb{Z}_{20} to
$5 \cdot \mathbb{Z}_{20}=\{0,5,10,15,20, \ldots, 95\}=\{0,5,10,15\} \cong \mathbb{Z}_{4}$ as a subgroup of \mathbb{Z}_{20}. Multiplicatively, we have $g_{1}=2^{20 / 4}=7$ and $g_{2}=2^{20 / 5}=16$, and the two subgroups

$$
S_{1}=\left\langle 2^{20 / 4}\right\rangle=\{1,7,24,18\} \text { and } S_{2}=\left\langle 2^{20 / 5}\right\rangle=\{1,16,6,21,11\}
$$

have 4 and 5 elements, respectively. The Chinese remainder algorithm for the discrete logarithm of 17 first computes the two constituents of x in S_{1} and $S_{2}: x_{1}=17^{20 / 4}=7$ and $x_{2}=17^{20 / 5}=21$. We can read off the discrete logarithms in S_{1} and $S_{2}: a_{1}=\operatorname{dlog}_{g_{1}} x_{1}=1$ and $a_{2}=\operatorname{dlog}_{g_{2}} x_{2}=3$. With the Chinese Remainder Algorithm, we find $a=13$, which satisfies $a=1$ in \mathbb{Z}_{4} and $a=3$ in \mathbb{Z}_{5}. We are quite happy to have found the same result as with baby and giant steps and Pollard's rho method.

Lemma

Let $d=q_{1} \cdots q_{r}$ be a factorization of $d=\# G$ into pairwise coprime factors, with $G=\langle g\rangle$ a cyclic group as above, let $x \in G$ and for $i \leq r$, let $S_{i}=\left\{x^{d / q_{i}}: x \in G\right\}$ and $T_{i}=\left\{x \in G: x^{q_{i}}=1\right\}$. Then the following hold.

1. $S_{i}=T_{i}$ is a subgroup with q_{i} elements, generated by $g^{d / q_{i}}$, and the map

$$
\begin{aligned}
G & \rightarrow S_{1} \times S_{2} \times \cdots \times S_{r}, \\
y & \mapsto\left(y^{d / q_{1}}, \ldots, y^{d / q_{r}}\right),
\end{aligned}
$$

is an isomorphism.
2. If $x=g^{a}, i \leq r$, and $a=a_{i}$ in $\mathbb{Z}_{q_{i}}$, then $x^{d / q_{i}}=\left(g^{d / q_{i}}\right)^{a_{i}}$.
3. If $a_{i}=\operatorname{dlog}_{g^{d / q}} x^{d / q_{i}}$ and $a \in \mathbb{Z}_{d}$ satisfies $a=a_{i}$ in $\mathbb{Z}_{q_{i}}$ for all $i \leq r$, then $a=\operatorname{dlog}_{g} x$.

Algorithm. Chinese remaindering for discrete logarithms.
Input: A cyclic group $G=\langle g\rangle$ of order $d=\# G$, and $x \in G$.
Output: $a=\operatorname{dlog}_{g} x$.

1. Compute the prime power factorization of d.
2. For each $i \leq r$, do steps 2 and 3 .
3. Compute $g_{i}=g^{d / q_{i}}$ and $x_{i}=x^{d / q_{i}}$, with the repeated squaring.
4. Compute the discrete logarithm $a_{i}=\operatorname{dlog}_{g_{i}} x_{i} \in \mathbb{Z}_{q_{i}}$ in $S_{i}=\left\langle g_{i}\right\rangle$.
5. Combine these "small" discrete logarithms via the Chinese Remainder Theorem to find the unique $a \in \mathbb{Z}_{d}$ so that $a=a_{i}$ in $\mathbb{Z}_{q_{i}}$ for all $i \leq r$.

Theorem

Let G be a cyclic group of n-bit order d. Then Algorithm computes discrete logarithms in G at the following cost:

1. factoring the integer d,
2. one discrete logarithm in each of the groups S_{1}, \ldots, S_{r},
3. $O\left(n^{2}\right)$ operations in G,
4. $O\left(n^{2}\right)$ bit operations.

Algorithm. Pohlig-Hellman.
Input: A cyclic group $G=\langle g\rangle$ with p^{e} elements, where p is a prime and $e \geq 2$ an integer, and $x \in G$.
Output: $\mathrm{dlog}_{g} x$.

1. Compute $h=g^{p^{e-1}}$ and set $y_{-1}=1 \in G$.
2. For i from 0 to $e-1$ do steps $3-5$.
3. $\quad x_{i} \leftarrow\left(x \cdot y_{i-1}\right)^{p^{e-i-1}}$. [Then $x_{i} \in H=\langle h\rangle$.]
4. $\quad a_{i} \leftarrow \operatorname{dlog}_{h} x_{i}$.
5. $\quad y_{i} \leftarrow y_{i-1} \cdot g^{-a_{i} p^{i}}$.
6. Return $a=a_{e-1} p^{e-1}+\cdots+a_{0}$.

Theorem

The algorithm correctly computes $\operatorname{dlog}_{g} x$. It uses $O\left(e^{2} \log p\right)$ operations in G, plus e calls to a subroutine for discrete logarithms in the group H with p elements.

Example

We illustrate the Pohlig-Hellman algorithm in an example with $p^{e}=3^{4}=81$. The group G is the subgroup $G=\langle 4\rangle \subseteq \mathbb{Z}_{163}^{\times}$ generated by $g=4$. We note that 163 is prime and $\# G_{163}^{\times}=\phi(163)=162=2 \cdot 81$. Furthermore, $2^{2}=4$ and $2^{81}=-1$ in \mathbb{Z}_{163}. Thus 2 is a generator of $\mathbb{Z}_{163}^{\times}$, so that the order of 4 in $\mathbb{Z}_{163}^{\times}$is 81 . We have $p=3, e=4$, and $H=\left\langle 4^{27}\right\rangle=\langle h\rangle=\{1,104,58\}$ with $h=104$. We trace the computation of the discrete logarithm $a=\operatorname{dlog}_{4} 60=2 \cdot 3^{3}+0 \cdot 3^{2}+1 \cdot 3+2=59$ of $x=60=4^{59}$. Discrete logarithms in H are found by inspection.

$$
\begin{gathered}
x_{0}=x^{p^{3}}=x^{27}=58 \in H, a_{0}=\operatorname{dlog}_{h} x_{0}=2, y_{0}=y_{-1} \cdot g^{-a_{0}}=51 \\
x_{1}=\left(x y_{0}\right)^{9}=104 \in H, a_{1}=\operatorname{dlog}_{h} x_{1}=1, y_{1}=y_{0} \cdot g^{-a_{1} \cdot 3}=39 \\
x_{2}=\left(x y_{1}\right)^{3}=1 \in H, a_{2}=\operatorname{dlog}_{h} x_{2}=0, y_{2}=y_{1} \cdot g^{-a_{2} \cdot 9}=39 \\
x_{3}=x y_{2}=58 \in H, a_{3}=\operatorname{dlog}_{h} x_{3}=2
\end{gathered}
$$

We now have computed
$a=a_{3} p^{3}+a_{2} p^{2}+a_{1} p+a_{0}=2 \cdot 27+0 \cdot 9+1 \cdot 3+2 \cdot 1=59$.

