Cryptanalytic world records, summer 2014 Discrete Logarithms

Dr. Daniel Loebenberger

 $\ensuremath{\operatorname{ALGORITHM}}$. Baby-step giant-step algorithm for the discrete logarithm.

Input: A cyclic group $G = \langle g \rangle$ with d elements, and a group element $x \in G$.

Output: $\operatorname{dlog}_g x$.

1. $m \leftarrow \lceil \sqrt{d} \rceil$.

- 2. Baby steps: compute and store $x, xg, xg^2, \ldots, xg^m$ in a table.
- 3. Giant steps: compute $g^m = xg^m \cdot x^{-1}$, g^{2m} , g^{3m} ,... until one of them, say g^{im} , equals an element in the table, say xg^j .
- 4. Return im j in \mathbb{Z}_d .

We take a group G with d = 20 elements. We might have $G = \mathbb{Z}_{20}$ with addition, or $G = \mathbb{Z}_{25}^{\times}$ with multiplication, since $\phi(25) = 4 \cdot 5$. Let us take the latter representation. Now $g = 2 \in G = \mathbb{Z}_{25}^{\times}$ is a generator, since $2^{20/2} = 2^{10} = 24 \neq 1$ and $2^{20/5} = 2^4 = 16 \neq 1$ in G. In order to compute the discrete logarithm of x = 17, we have $m = \lceil \sqrt{20} \rceil = 5$, and perform the following computations.

k	baby steps xg^k	giant steps g^{km}
0	17	1
1	9	7
2	18	24
3	11	18
4	22	1
5		7

In the third giant step, we find the collision $xg^2 = 18 = g^{3\cdot 5}$, and hence dlog₂ $17 = 3 \cdot 5 - 2 = 13$. We check that indeed $2^{13} = 17 \text{ in } \mathbb{Z}_{25}^{\times}$.

For any group G with d elements, the baby-step giant-step method solves DL_G with at most 2m group operations and space for m elements of G, where $m = \lceil \sqrt{d} \rceil$.

ALGORITHM. Birthday algorithm for discrete logarithm.

Input: A cyclic group $G = \langle g \rangle$ with d elements, and a group element $x \in G$.

Output: $\operatorname{dlog}_q x$.

- 1. $X, Y \longleftarrow \emptyset$.
- 2. Do step 3 until a collision of X and Y occurs.
- Choose uniformly at random a bit b (1, 1) and i (1, 1) (0, 1). Add xgⁱ to X if b = 0 and gⁱ to Y if b = 1, and remember the index i.
 If xgⁱ = g^j for some xgⁱ ∈ X and g^j ∈ Y, then return j i in Zd.

The algorithm works correctly as specified. Its expected time is $O(\sqrt{d} \log d)$ multiplications in G, with expected space for $O(\sqrt{d})$ elements of G.

We have a cyclic group $G = \langle g \rangle$ with d elements, and an element $x = g^a$ of G. Our task is to calculate $a = \operatorname{dlog}_g x$ from g and x. Choose a sequence $b_0, b_1, \ldots \xleftarrow{\mathfrak{W}} \{0, 1, 2\}$ of uniformly and independently distributed random "trits" b_k , choose $u_0, v_0 \xleftarrow{\mathfrak{W}} \mathbb{Z}_d$ at random and start with $y_0 = x^{u_0}g^{v_0}$. Then we calculate y_1, y_2, \ldots in G by

$$y_k = \begin{cases} x \cdot y_{k-1} & \text{if } b_{k-1} = 0, \\ y_{k-1}^2 & \text{if } b_{k-1} = 1, \\ g \cdot y_{k-1} & \text{if } b_{k-1} = 2, \end{cases}$$

until we find a collision $y_i = y_j$ with $i \neq j$.

ALGORITHM. The Pollard rho algorithm for discrete logarithms.

Input: A cyclic group $G = \langle g \rangle$ of order d, a partition

 $G = S_0 \cup S_1 \cup S_2$ into three disjoint parts of roughly equal size, and $x \in G$.

Output: $dlog_g x$, or "failure".

1. Define the iteration function \mathcal{P} by $\mathcal{P}(z,\rho) = (z^*,\rho^*)$, where $z, z^* \in G, \rho, \rho^* \in \mathbb{Z}_d[t]$, and $z^* = \begin{cases} x \cdot z & \text{if } z \in S_0, \\ z^2 & \text{if } z \in S_1, \\ q \cdot z & \text{if } z \in S_2. \end{cases} \quad \rho^* = \begin{cases} \rho + t & \text{if } z \in S_0, \\ 2\rho & \text{if } z \in S_1, \\ \rho + 1 & \text{if } z \in S_2. \end{cases}$ 2. $u_0, v_0 \xleftarrow{\mathbf{w}} \mathbb{Z}_d, x_0, y_0 \leftarrow x^{u_0} g^{v_0}, \sigma_0, \tau_0 \leftarrow u_0 t + v_0, k \leftarrow 0.$ 3. Do step 4 until $x_k = y_k$. 4. $k \leftarrow k+1$. Calculate $x_k, y_k \in G$ and $\sigma_k, \tau_k \in \mathbb{Z}_d[t]$ by $(x_k, \sigma_k) \leftarrow \mathcal{P}(x_{k-1}, \sigma_{k-1}), \quad (y_k, \tau_k) \leftarrow \mathcal{P}(\mathcal{P}(y_{k-1}, \tau_{k-1})).$ 5. Let $\sigma_k = ut + v$ and $\tau_k = u't + v'$, with $u, u', v, v' \in \mathbb{Z}_d$. If gcd(u-u',d)=1 in \mathbb{Z} , then return $(v'-v) \cdot (u-u')^{-1}$ in \mathbb{Z}_d , else return "failure".

Let G be a cyclic group of order d. Then the Pollard rho algorithm, with Floyd's trick, finds a discrete logarithm in G with an expected number of $O(\sqrt{d})$ group operations, provided that the sequence x_0, x_1, x_2, \ldots behaves randomly. Space is required for two elements of G and four elements of \mathbb{Z}_d .

We have $g = 2 \in G = \mathbb{Z}_{25}^{\times}$, d = 20, and x = 17. As suggested above, we use the partition $S_0 = \{1, 2, 3, 4, 6, 7, 8\}$, $S_1 = \{9, 11, 12, 13, 14, 16, 17\}$, and $S_2 = \{18, 19, 21, 22, 23, 24\}$ of G, with 7,7, and 6 elements, respectively. Our random choice is $u_0 = 12$ and $v_0 = 7$, so that $\sigma_0 = 12t + 7$.

k	x_k	y_k	σ_k	$ au_k$
0	8	8	12t + 7	12t + 7
1	6	23	4t + 16	9t + 14
2	23	6	9t + 14	8
3	16	16	$ \frac{12t + 7}{4t + 16} \\ 9t + 14 \\ 10t + 14 $	2t + 18

We find the collision $x_3 = y_3 = 16$ with $\sigma_3 = 10t + 14$ and $\tau_3 = 2t + 18$ in $\mathbb{Z}_{20}[t]$. Then u - u' = 10 - 2 and $w = \gcd(8, 20) = 4 \neq 1$. The algorithm as stated returns "failure".

But we persist and compute $a = d\log_2 17$ as a root of $\sigma_3 - \tau_3$. Namely, d' = d/w = 20/4 = 5, and dividing $\sigma_3 - \tau_3$ by 4, we have

$$(10t + 14 - (2t + 18))/4 = (8t + 16)/4 = 2t + 4$$

The quantity called u in the Remark is now $\tilde{u} = 8$, and $(\tilde{u}/w)^{-1} = (8/4)^{-1} = 2^{-1} = 3$ in $\mathbb{Z}_{d'} = \mathbb{Z}_5$. Then

$$b = \frac{-v}{w} \cdot (\frac{u}{w})^{-1} = \frac{-16}{4} \cdot 3 = -12 = 3 \text{ in } \mathbb{Z}_5,$$

and the possible values for a are a = b + id' = 3 + 5i in \mathbb{Z}_{20} , for $0 \le i < 4$. Thus $a \in \{3, 8, 13, 18\}$, and a check reveals that $dlog_2 17 = 13$.

Lemma

Suppose that $d = q_1q_2$ with coprime q_1 and q_2 , and that $a_i = \operatorname{dlog}_{g_i} x_i$ in \mathbb{Z}_{d/q_i} , where $g_i = g^{d/q_i}$ and $x_i = x^{d/q_i} \in \pi_{d/q_i}(G)$, for i = 1, 2. Then $\operatorname{dlog}_g x = a_i$ in \mathbb{Z}_{q_i} for i = 1, 2.

We have $G = \mathbb{Z}_{25}^{\times} = \langle 2 \rangle$ with $d = \#G = 20 = 4 \cdot 5$, so that $q_1 = 4$ and $q_2 = 5$, and $x = 17 \in G$. Additively, μ_5 maps \mathbb{Z}_{20} to $5 \cdot \mathbb{Z}_{20} = \{0, 5, 10, 15, 20, \dots, 95\} = \{0, 5, 10, 15\} \cong \mathbb{Z}_4$ as a subgroup of \mathbb{Z}_{20} . Multiplicatively, we have $g_1 = 2^{20/4} = 7$ and $g_2 = 2^{20/5} = 16$, and the two subgroups

$$S_1 = \langle 2^{20/4} \rangle = \{1, 7, 24, 18\}$$
 and $S_2 = \langle 2^{20/5} \rangle = \{1, 16, 6, 21, 11\}$

have 4 and 5 elements, respectively. The Chinese remainder algorithm for the discrete logarithm of 17 first computes the two constituents of x in S_1 and S_2 : $x_1 = 17^{20/4} = 7$ and $x_2 = 17^{20/5} = 21$. We can read off the discrete logarithms in S_1 and S_2 : $a_1 = \text{dlog}_{g_1} x_1 = 1$ and $a_2 = \text{dlog}_{g_2} x_2 = 3$. With the Chinese Remainder Algorithm, we find a = 13, which satisfies a = 1 in \mathbb{Z}_4 and a = 3 in \mathbb{Z}_5 . We are quite happy to have found the same result as with baby and giant steps and Pollard's rho method.

Lemma

Let $d = q_1 \cdots q_r$ be a factorization of d = #G into pairwise coprime factors, with $G = \langle g \rangle$ a cyclic group as above, let $x \in G$ and for $i \leq r$, let $S_i = \{x^{d/q_i} : x \in G\}$ and $T_i = \{x \in G : x^{q_i} = 1\}$. Then the following hold.

1. $S_i = T_i$ is a subgroup with q_i elements, generated by g^{d/q_i} , and the map

$$G \to S_1 \times S_2 \times \dots \times S_r,$$

 $y \mapsto (y^{d/q_1}, \dots, y^{d/q_r}),$

is an isomorphism.

2. If $x = g^a$, $i \leq r$, and $a = a_i$ in \mathbb{Z}_{q_i} , then $x^{d/q_i} = (g^{d/q_i})^{a_i}$.

3. If $a_i = \operatorname{dlog}_{g^{d/q_i}} x^{d/q_i}$ and $a \in \mathbb{Z}_d$ satisfies $a = a_i$ in \mathbb{Z}_{q_i} for all $i \leq r$, then $a = \operatorname{dlog}_g x$.

ALGORITHM. Chinese remaindering for discrete logarithms. Input: A cyclic group $G = \langle g \rangle$ of order d = #G, and $x \in G$. Output: $a = \operatorname{dlog}_g x$.

- 1. Compute the prime power factorization of d.
- 2. For each $i \leq r$, do steps 2 and 3.
- 3. Compute $g_i = g^{d/q_i}$ and $x_i = x^{d/q_i}$, with the repeated squaring.
- 4. Compute the discrete logarithm $a_i = d\log_{g_i} x_i \in \mathbb{Z}_{q_i}$ in $S_i = \langle g_i \rangle$.
- 5. Combine these "small" discrete logarithms via the Chinese Remainder Theorem to find the unique $a \in \mathbb{Z}_d$ so that $a = a_i$ in \mathbb{Z}_{q_i} for all $i \leq r$.

Let G be a cyclic group of n-bit order d. Then Algorithm computes discrete logarithms in G at the following cost:

- 1. factoring the integer d,
- 2. one discrete logarithm in each of the groups S_1, \ldots, S_r ,
- 3. $O(n^2)$ operations in G,
- 4. $O(n^2)$ bit operations.

ALGORITHM. Pohlig-Hellman.

Input: A cyclic group $G = \langle g \rangle$ with p^e elements, where p is a prime and $e \ge 2$ an integer, and $x \in G$. Output: dlog_g x.

1. Compute
$$h = g^{p^{e-1}}$$
 and set $y_{-1} = 1 \in G$.
2. For i from 0 to $e - 1$ do steps $3 - 5$.
3. $x_i \leftarrow (x \cdot y_{i-1})^{p^{e-i-1}}$. [Then $x_i \in H = \langle h \rangle$.]
4. $a_i \leftarrow \operatorname{dlog}_h x_i$.
5. $y_i \leftarrow y_{i-1} \cdot g^{-a_i p^i}$.
6. Return $a = a_{e-1}p^{e-1} + \cdots + a_0$.

The algorithm correctly computes $\operatorname{dlog}_g x.$ It uses $O(e^2 \log p)$ operations in G, plus e calls to a subroutine for discrete logarithms in the group H with p elements.

We illustrate the Pohlig-Hellman algorithm in an example with $p^e = 3^4 = 81$. The group G is the subgroup $G = \langle 4 \rangle \subseteq \mathbb{Z}_{163}^{\times}$ generated by g = 4. We note that 163 is prime and $\#G_{163}^{\times} = \phi(163) = 162 = 2 \cdot 81$. Furthermore, $2^2 = 4$ and $2^{81} = -1$ in \mathbb{Z}_{163} . Thus 2 is a generator of $\mathbb{Z}_{163}^{\times}$, so that the order of 4 in $\mathbb{Z}_{163}^{\times}$ is 81. We have p = 3, e = 4, and $H = \langle 4^{27} \rangle = \langle h \rangle = \{1, 104, 58\}$ with h = 104. We trace the computation of the discrete logarithm $a = \text{dlog}_4 \ 60 = 2 \cdot 3^3 + 0 \cdot 3^2 + 1 \cdot 3 + 2 = 59$ of $x = 60 = 4^{59}$. Discrete logarithms in H are found by inspection.

$$x_0 = x^{p^3} = x^{27} = 58 \in H, a_0 = \operatorname{dlog}_h x_0 = 2, y_0 = y_{-1} \cdot g^{-a_0} = 51,$$

$$\begin{split} x_1 &= (xy_0)^9 = 104 \in H, a_1 = \mathsf{dlog}_h \, x_1 = 1, y_1 = y_0 \cdot g^{-a_1 \cdot 3} = 39, \\ x_2 &= (xy_1)^3 = 1 \in H, a_2 = \mathsf{dlog}_h \, x_2 = 0, y_2 = y_1 \cdot g^{-a_2 \cdot 9} = 39, \\ x_3 &= xy_2 = 58 \in H, a_3 = \mathsf{dlog}_h \, x_3 = 2. \end{split}$$

We now have computed

$$a = a_3 p^3 + a_2 p^2 + a_1 p + a_0 = 2 \cdot 27 + 0 \cdot 9 + 1 \cdot 3 + 2 \cdot 1 = 59.$$