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Algorithm. Baby-step giant-step algorithm for the discrete
logarithm.

Input: A cyclic group G = 〈g〉 with d elements, and a group
element x ∈ G.

Output: dlogg x.

1. m←− ⌈
√
d ⌉.

2. Baby steps: compute and store x, xg, xg2, . . . , xgm in a table.
3. Giant steps: compute gm = xgm · x−1, g2m, g3m, . . . until one

of them, say gim, equals an element in the table, say xgj .
4. Return im− j inZd.
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Example

We take a group G with d = 20 elements. We might have G = Z20

with addition, or G = Z
×

25
with multiplication, since φ(25) = 4 · 5.

Let us take the latter representation. Now g = 2 ∈ G = Z
×

25
is a

generator, since 220/2 = 210 = 24 6= 1 and 220/5 = 24 = 16 6= 1 in
G. In order to compute the discrete logarithm of x = 17, we have
m = ⌈

√
20⌉ = 5, and perform the following computations.

k baby steps xgk giant steps gkm

0 17 1

1 9 7

2 18 24

3 11 18

4 22 1

5 7

. . .

In the third giant step, we find the collision xg2 = 18 = g3·5, and
hence dlog2 17 = 3 · 5− 2 = 13. We check that indeed
213 = 17 inZ×

25
.
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Theorem

For any group G with d elements, the baby-step giant-step method
solves DLG with at most 2m group operations and space for m
elements of G, where m = ⌈

√
d ⌉.
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Algorithm. Birthday algorithm for discrete logarithm.

Input: A cyclic group G = 〈g〉 with d elements, and a group
element x ∈ G.

Output: dlogg x.

1. X,Y ←− ∅.
2. Do step 3 until a collision of X and Y occurs.
3. Choose uniformly at random a bit b←− {0, 1} and

i←− {0, . . . , d− 1}. Add xgi to X if b = 0 and gi to Y if
b = 1, and remember the index i.

4. If xgi = gj for some xgi ∈ X and gj ∈ Y , then return
j − i in Zd.
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Theorem

The algorithm works correctly as specified. Its expected time is
O(
√
d log d) multiplications in G, with expected space for O(

√
d)

elements of G.
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We have a cyclic group G = 〈g〉 with d elements, and an element
x = ga of G. Our task is to calculate a = dlogg x from g and x.
Choose a sequence b0, b1, . . .←− {0, 1, 2} of uniformly and
independently distributed random “trits” bk, choose u0, v0 ←− Zd

at random and start with y0 = xu0gv0 . Then we calculate
y1, y2, . . . in G by

yk =







x · yk−1 if bk−1 = 0,
y2k−1

if bk−1 = 1,

g · yk−1 if bk−1 = 2,

until we find a collision yi = yj with i 6= j.
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Algorithm. The Pollard rho algorithm for discrete logarithms.

Input: A cyclic group G = 〈g〉 of order d, a partition
G = S0 ∪ S1 ∪ S2 into three disjoint parts of roughly equal
size, and x ∈ G.

Output: dlogg x, or “failure”.

1. Define the iteration function P by P(z, ρ) = (z∗, ρ∗), where
z, z∗ ∈ G, ρ, ρ∗ ∈ Zd[t], and

z∗ =







x · z if z ∈ S0,
z2 if z ∈ S1,
g · z if z ∈ S2.

ρ∗ =







ρ+ t if z ∈ S0,
2ρ if z ∈ S1,
ρ+ 1 if z ∈ S2.

2. u0, v0 ←− Zd, x0, y0 ←− xu0gv0 , σ0, τ0 ←− u0t+ v0, k ←− 0.
3. Do step 4 until xk = yk.
4. k ←− k + 1. Calculate xk, yk ∈ G and σk, τk ∈ Zd[t] by

(xk, σk)← P(xk−1, σk−1), (yk, τk)← P(P(yk−1, τk−1)).

5. Let σk = ut+ v and τk = u′t+ v′, with u, u′, v, v′ ∈ Zd. If
gcd(u− u′, d) = 1 in Z, then return
(v′ − v) · (u− u′)−1 in Zd, else return “failure”.
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Theorem

Let G be a cyclic group of order d. Then the Pollard rho
algorithm, with Floyd’s trick, finds a discrete logarithm in G with
an expected number of O(

√
d) group operations, provided that the

sequence x0, x1, x2, . . . behaves randomly. Space is required for
two elements of G and four elements of Zd.
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Example

We have g = 2 ∈ G = Z
×

25
, d = 20, and x = 17. As suggested

above, we use the partition S0 = {1, 2, 3, 4, 6, 7, 8},
S1 = {9, 11, 12, 13, 14, 16, 17}, and S2 = {18, 19, 21, 22, 23, 24} of
G, with 7, 7, and 6 elements, respectively. Our random choice is
u0 = 12 and v0 = 7, so that σ0 = 12t+ 7.

k xk yk σk τk
0 8 8 12t+ 7 12t+ 7
1 6 23 4t+ 16 9t+ 14
2 23 6 9t+ 14 8
3 16 16 10t+ 14 2t+ 18

We find the collision x3 = y3 = 16 with σ3 = 10t+ 14 and
τ3 = 2t+ 18 in Z20[t]. Then u− u′ = 10− 2 and
w = gcd(8, 20) = 4 6= 1. The algorithm as stated returns “failure”.
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Example

But we persist and compute a = dlog2 17 as a root of σ3 − τ3.
Namely, d′ = d/w = 20/4 = 5, and dividing σ3 − τ3 by 4, we have

(10t+ 14− (2t+ 18))/4 = (8t+ 16)/4 = 2t+ 4.

The quantity called u in the Remark is now ũ = 8, and
(ũ/w)−1 = (8/4)−1 = 2−1 = 3 in Zd′ = Z5. Then

b =
−v
w
· ( u
w
)−1 =

−16
4
· 3 = −12 = 3 in Z5,

and the possible values for a are a = b+ id′ = 3 + 5i in Z20, for
0 ≤ i < 4. Thus a ∈ {3, 8, 13, 18}, and a check reveals that
dlog2 17 = 13.
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Lemma

Suppose that d = q1q2 with coprime q1 and q2, and that
ai = dloggi xi in Zd/qi , where gi = gd/qi and

xi = xd/qi ∈ πd/qi(G), for i = 1, 2. Then dlogg x = ai in Zqi for
i = 1, 2.
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Zd

Zq1 Zq2

G

πe1(G) πe2(G)

µe1 µe2

πe1 πe2

dexpg

dexpg1 dexpg2

dlogg

dlogg1 dlogg2
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Example

We have G = Z
×

25
= 〈2〉 with d = #G = 20 = 4 · 5, so that q1 = 4

and q2 = 5, and x = 17 ∈ G. Additively, µ5 maps Z20 to
5 · Z20 = {0, 5, 10, 15, 20, . . . , 95} = {0, 5, 10, 15} ∼= Z4 as a
subgroup of Z20. Multiplicatively, we have g1 = 220/4 = 7 and
g2 = 220/5 = 16, and the two subgroups

S1 = 〈220/4〉 = {1, 7, 24, 18} and S2 = 〈220/5〉 = {1, 16, 6, 21, 11}

have 4 and 5 elements, respectively. The Chinese remainder
algorithm for the discrete logarithm of 17 first computes the two
constituents of x in S1 and S2: x1 = 1720/4 = 7 and
x2 = 1720/5 = 21. We can read off the discrete logarithms in S1

and S2 : a1 = dlogg1 x1 = 1 and a2 = dlogg2 x2 = 3. With the
Chinese Remainder Algorithm, we find a = 13, which satisfies
a = 1 in Z4 and a = 3 in Z5. We are quite happy to have found the
same result as with baby and giant steps and Pollard’s rho method.
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Lemma

Let d = q1 · · · qr be a factorization of d = #G into pairwise
coprime factors, with G = 〈g〉 a cyclic group as above, let x ∈ G
and for i ≤ r, let Si = {xd/qi : x ∈ G} and Ti = {x ∈ G : xqi = 1}.
Then the following hold.

1. Si = Ti is a subgroup with qi elements, generated by gd/qi ,
and the map

G→ S1 × S2 × · · · × Sr,

y 7→ (yd/q1 , . . . , yd/qr),

is an isomorphism.

2. If x = ga, i ≤ r, and a = ai in Zqi, then xd/qi = (gd/qi)ai .

3. If ai = dloggd/qi x
d/qi and a ∈ Zd satisfies a = ai in Zqi for all

i ≤ r, then a = dlogg x.
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Algorithm. Chinese remaindering for discrete logarithms.

Input: A cyclic group G = 〈g〉 of order d = #G, and x ∈ G.
Output: a = dlogg x.

1. Compute the prime power factorization of d.
2. For each i ≤ r, do steps 2 and 3.
3. Compute gi = gd/qi and xi = xd/qi , with the repeated

squaring.
4. Compute the discrete logarithm ai = dloggi xi ∈ Zqi in

Si = 〈gi〉.
5. Combine these “small” discrete logarithms via the Chinese

Remainder Theorem to find the unique a ∈ Zd so that
a = ai in Zqi for all i ≤ r.
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Theorem

Let G be a cyclic group of n-bit order d. Then Algorithm
computes discrete logarithms in G at the following cost:

1. factoring the integer d,

2. one discrete logarithm in each of the groups S1, . . . , Sr,

3. O(n2) operations in G,

4. O(n2) bit operations.
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G
✟
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π5

S1
∼= Z4

❍
❍
❍❥

π4

S2
∼= Z5

❄

π2

S10
∼= Z2
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Algorithm. Pohlig-Hellman.

Input: A cyclic group G = 〈g〉 with pe elements, where p is a
prime and e ≥ 2 an integer, and x ∈ G.

Output: dlogg x.

1. Compute h = gp
e−1

and set y−1 = 1 ∈ G.
2. For i from 0 to e− 1 do steps 3 – 5.

3. xi ← (x · yi−1)
pe−i−1

. [Then xi ∈ H = 〈h〉.]
4. ai ← dlogh xi.

5. yi ← yi−1 · g−aipi .
6. Return a = ae−1p

e−1 + · · · + a0.
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Theorem

The algorithm correctly computes dlogg x. It uses O(e2 log p)
operations in G, plus e calls to a subroutine for discrete logarithms
in the group H with p elements.

1/21



Example

We illustrate the Pohlig-Hellman algorithm in an example with
pe = 34 = 81. The group G is the subgroup G = 〈4〉 ⊆ Z

×

163

generated by g = 4. We note that 163 is prime and
#G×

163
= φ(163) = 162 = 2 · 81. Furthermore, 22 = 4 and

281 = −1 in Z163. Thus 2 is a generator of Z×

163
, so that the order

of 4 in Z
×

163
is 81. We have p = 3, e = 4, and

H = 〈427〉 = 〈h〉 = {1, 104, 58} with h = 104. We trace the
computation of the discrete logarithm
a = dlog4 60 = 2 · 33 + 0 · 32 + 1 · 3 + 2 = 59 of x = 60 = 459.
Discrete logarithms in H are found by inspection.

x0 = xp3

= x27 = 58 ∈ H, a0 = dlogh x0 = 2, y0 = y
−1 · g−a0 = 51,

x1 = (xy0)
9 = 104 ∈ H, a1 = dlogh x1 = 1, y1 = y0 · g−a1·3 = 39,

x2 = (xy1)
3 = 1 ∈ H, a2 = dlogh x2 = 0, y2 = y1 · g−a2·9 = 39,

x3 = xy2 = 58 ∈ H, a3 = dlogh x3 = 2.

We now have computed
a = a3p

3 + a2p
2 + a1p+ a0 = 2 · 27 + 0 · 9 + 1 · 3 + 2 · 1 = 59.
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