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ALGORITHM. Baby-step giant-step algorithm for the discrete
logarithm.

Input: A cyclic group G = (g) with d elements, and a group
element z € G.
Output: dlog, z.

2. Baby steps: compute and store x, zg, zg>,...,xg™ in a table.
3. Giant steps: compute g™ = g™ -z, ¢*™, ¢>™,... until one

of them, say ¢'™, equals an element in the table, say zg¢’.
4. Return im — jinZg.
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Example

We take a group G with d = 20 elements. We might have G = Zog
with addition, or G = ZQX5 with multiplication, since ¢(25) =4 - 5.
Let us take the latter representation. Now g =2 € G =Z; is a
generator, since 220/2 =210 — 24 £ 1 and 220/5 =24 =16 # 1 in
G. In order to compute the discrete logarithm of x = 17, we have
m = [v/20] = 5, and perform the following computations.

k baby steps zg®  giant steps g*™
0 17 1
1 9 7
2 18 24
3 11 18
4 22 1
5 7

In the third giant step, we find the collision zg?> = 18 = ¢>®, and
hence dlog, 17 = 3 -5 — 2 = 13. We check that indeed
213 = 17in ZJ;.
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Theorem

For any group G with d elements, the baby-step giant-step method
solves DL with at most 2m group operations and space for m
elements of G, where m = [V/d].
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ALGORITHM. Birthday algorithm for discrete logarithm.

Input: A cyclic group G = (g) with d elements, and a group
element z € G.
Output: dlog, z.

1. X,V <« 0.

2. Do step 3 until a collision of X and Y occurs.

3. Choose uniformly at random a bit b <% {0,1} and
i<% {0,...,d—1}. Add ¢’ to X if b=0 and ¢’ to Y if
b =1, and remember the index 1.

4. If xg' = ¢’ for some xg' € X and g/ € Y, then return
j —17in Zd.
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Theorem

The algorithm works correctly as specified. Its expected time is
O(v/dlogd) multiplications in G, with expected space for O(v/d)
elements of G.
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We have a cyclic group G = (g) with d elements, and an element
z = g* of G. Our task is to calculate a = dlog, x from g and x.
Choose a sequence by, by, ... <% {0, 1,2} of uniformly and
independently distributed random “trits” by, choose ug, vy <& Zg4
at random and start with yg = 2“°g%. Then we calculate

Y1,Y2,. .. in G by

T-yp—1 ifby_1 =0,
yk’ = y]%_]_ If bk—l = ]-7
g Yp—1 ifby_1 =2,

until we find a collision y; = y; with @ # j.
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ALGORITHM. The Pollard rho algorithm for discrete logarithms.

Input: A cyclic group G = (g) of order d, a partition
G = Sy U .S1 U S5 into three disjoint parts of roughly equal
size, and z € G.

Output: dlog, z, or “failure”.

1. Define the iteration function P by P(z, p) = (2%, p*), where
z,z* € G, p,p* € Lg[t], and

x-z if z€.8, p+t ifze€S,
2*={ 22 ifzeS, p'=< 2p if z €57,
g-z ifzeS,. p+1 ifzel,.

2. ugp, vy & 74, xo, Yo — x19g"°, 0¢, 79 +— ugt +vg, k <— 0.

w

Do step 4 until 2, = yy.
4. k<+— k+ 1. Calculate zy,yr € G and oy, 71, € Zg|t] by

(g, 0) — P(xp—1,0k-1), (ks 7k) < P(P(Yk—-1,Tk-1))-

5. Let o, = ut +v and 7, = vt + v/, with u,u/,v,v’ € Z4. If
ged(u —u/,d) =1 in Z, then return
(v —v) - (u—u')"tin Zg, else return “failure”.
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Theorem

Let GG be a cyclic group of order d. Then the Pollard rho
algorithm, with Floyd's trick, finds a discrete logarithm in G with
an expected number of 0(\/E) group operations, provided that the
sequence xg, T1, T3, ... behaves randomly. Space is required for
two elements of G and four elements of Z.
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Example

We have g =2 € G = ZJ;, d =20, and & = 17. As suggested
above, we use the partition Sy = {1,2,3,4,6,7,8},
S;=1{9,11,12,13,14,16,17}, and Se = {18,19,21,22,23,24} of
G, with 7,7, and 6 elements, respectively. Our random choice is
ug = 12 and vg = 7, so that o9 = 12t 4+ 7.

AERT Ok Tk

0|8 8 12t+7 12647
116 23 4t+16 9t+14
2
3

23 6 9t+14 8
16 16 10t+14 2t+18

We find the collision x3 = y3 = 16 with o3 = 10t + 14 and
73 = 2t 4+ 18in Zgo[t]. Then u —u' = 10 — 2 and

w = ged(8,20) =4 # 1. The algorithm as stated returns “failure”.
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Example

But we persist and compute a = dlog, 17 as a root of g3 — 73.

Namely, d' = d/w = 20/4 = 5, and dividing o5 — 73 by 4, we have
(10t + 14 — (2t + 18))/4 = (8t + 16) /4 = 2t + 4.

The quantity called w in the Remark is now @ = 8, and

(a/w)~t = (8/4)"t =271 =3in Zy = Zs. Then

_ —16 .

b:z(—) 1:T'3:—12=3mz5,

and the possible values for a are a = b+ id' = 3 + 5iin Zsg, for
0<i<4. Thusae€ {3,8,13,18}, and a check reveals that
dlog, 17 = 13.
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Lemma

Suppose that d = ¢1¢2 with coprime ¢; and ¢o, and that

a; = C”Oggi xT; in Zd/qiv where g; = gd/q’i and

x; = x¥% ¢ 74/q;(G), for i = 1,2. Then dlog, = = a; in Z,, for
i=1,2.
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Example

We have G = Zj; = (2) withd = #G =20=4-5, so that g1 =4
and g = 5, and x = 17 € G. Additively, us maps Zgg to

5 Zs =1{0,5,10,15,20,...,95} = {0,5,10,15} = Z, as a
subgroup of Zsg. Multiplicatively, we have g; = 220/ = 7 and

go = 220/5 = 16, and the two subgroups

Sy = (220/%y = {1,7,24,18} and Sy = (22/5) = {1,16,6,21,11}

have 4 and 5 elements, respectively. The Chinese remainder
algorithm for the discrete logarithm of 17 first computes the two
constituents of x in Sy and Sy: x; = 1720/4 = 7 and

To = 1720/5 = 21. We can read off the discrete logarithms in .S;
and Sy: a1 = dlog;g1 x1=1and as = dIogQQ x9 = 3. With the
Chinese Remainder Algorithm, we find a = 13, which satisfies
a=1inZ4 and a = 3in Zs. We are quite happy to have found the
same result as with baby and giant steps and Pollard’s rho method.
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Lemma

Let d = q1 - - - g, be a factorization of d = #G into pairwise
coprime factors, with G = (g) a cyclic group as above, let x € G
and fori <r,let S; = {z%%: 2 € G} and T} = {x € G: 2% = 1}.
Then the following hold.

1. S; = Tj is a subgroup with ¢; elements, generated by g%/,
and the map
G— 51 x8 x---x§,,
y = (g, g,
is an isomorphism.
2. fx=g% 1<r and a = a;in Zg,, then /4 = (gd/qi)ai.
3. If a; = dlog a/q, 2% and a € Z, satisfies a = a; in Z,, for all

i <r, then a = dloggac.
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ALGORITHM. Chinese remaindering for discrete logarithms.

Input: A cyclic group G = (g) of order d = #G, and z € G.
Output: a = dlog, .

1.
. For each i < r, do steps 2 and 3.

Compute the prime power factorization of d.

Compute g; = ¢g%/% and z; = %% with the repeated
squaring.
Compute the discrete logarithm a; = dloggi T; € Lg; In
Si = (gi)

. Combine these “small” discrete logarithms via the Chinese

Remainder Theorem to find the unique a € Z, so that
a = a;in Zg, for all i <.
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Theorem

Let G be a cyclic group of n-bit order d. Then Algorithm
computes discrete logarithms in G at the following cost:

1. factoring the integer d,

2. one discrete logarithm in each of the groups 51, ..., S,
3. O(n?) operations in G,

4. O(n?) bit operations.
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ALGORITHM. Pohlig-Hellman.

Input: A cyclic group G = (g) with p® elements, where p is a
prime and e > 2 an integer, and xz € G.
Output: dlog, z.

1. Compute h = gpei1 andsety_1 =1€G.

2. For i from 0 to e — 1 do steps 3 — 5.

3 x;  (x- yi_l)pe_i_l. [Then z; € H = (h).]
4. a; < C”Ogh Z;.

5 Yi < Yio1 g P

6. Return a = ac_1p° L+ -+ + ag.
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Theorem

The algorithm correctly computes dlog, z. It uses O(€?log p)
operations in G, plus e calls to a subroutine for discrete logarithms
in the group H with p elements.
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Example

We illustrate the Pohlig-Hellman algorithm in an example with

p® = 3% =81. The group G is the subgroup G = (4) C Z,
generated by g = 4. We note that 163 is prime and

#Gs3 = ¢(163) = 162 = 2 - 81. Furthermore, 2% = 4 and

281 — _1in Z1g3. Thus 2 is a generator of leﬁg, so that the order
of 4 in Zjy3 is 81. We have p =3, e = 4, and

H = (4*") = (h) = {1,104, 58} with h = 104. We trace the
computation of the discrete logarithm
a=dlog,60=2-3%+0-3>+1-3+2=59 of z =60 = 4%.
Discrete logarithms in H are found by inspection.

ao

zo=aF = 22" =58 € H,ag = dlog, 20 = 2,90 = y_1 - g~ = 51,
x1 = (2y0)? =104 € H,a; =dlog, 21 = 1,41 = 5o - g3 = 39,
o= (zy1)® =1€ H,a =dlog, zo = 0,y2 = y1 - g~ 2% = 39,
r3 = ay2 = 58 € H,a3 = dlog;, x3 = 2.

We now have computed
a=asp>+ap’+ap+ap=2-27+0-9+1-34+2-1=59.
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