Cryptanalytic world records, summer 2014 Daniel Loebenberger, Konstantin Ziegler

3. Exercise sheet Hand in solutions until Saturday, 26 April 2014, 23:59:59

Exercise 3.1 (Pollard rho for discrete logarithms). (5 points) Consider the group $G = \mathbb{Z}_{25}^{\times}$ generated by the element $g = 2 \in G$. Compute the discrete logarithm of $x = 17 \in G$ to the base g using the Pollard rho method. Use the partition $S_0 = \{1, 2, 3, 4, 6, 7, 8\}, S_1 = \{9, 11, 12, 13, 14, 16, 17\}$, and $S_2 = \{18, 19, 21, 22, 23, 24\}$ of G, with 7, 7, and 6 elements, respectively. Hint: If the computation returns "failure" persist in computing the discrete logarithm by the method presented in the lecture.

Exercise 3.2 (Chinese remaindering for Discrete Logarithms). (8 points)

- (i) Let *G* be a cyclic group of size *d* and *g* be a generator of *G*. Let *q* be a divisor of *d* and consider the map $\pi: G \to G$, with $\pi(x) = x^{d/q}$. Prove that $\pi(G) = \{y \in G : y^q = 1\}$.
- (ii) Let $G = \mathbb{Z}_p^{\times}$ with $p = 2 \cdot 3 \cdot 5 \cdot 7 + 1$, g = 2, x = 10. Compute the discrete 5 logarithm of x in base g using the Chinese remainder theorem.

Exercise 3.3 (DLP with CRT and Pohlig-Hellman). (11 points)

Let G be the multiplicative group \mathbb{Z}_{73}^{\times} . Consider the two elements g = 5 and x = 6.

- (i) Verify that *g* is a generator of *G*.
- (ii) Compute $a = \text{dlog}_g x$ as follows: Determine a modulo 8 from $x^9 = (g^9)^a$. 3 (The order of g^9 is 8.) Determine a modulo 9 from $x^8 = (g^8)^a$. (The order of g^8 is 9.) Combine these two congruences to compute a modulo 72.

2

2

Now let $G = \mathbb{Z}_{163}^{\times}$, g = 7 and x = 20.

(iii) Prove that $\operatorname{ord}(g) = 162$.

(iv) Compute $a = \text{dlog}_g x$ as follows: Determine $a \mod 2$ from $x^{81} = (g^{81})^a$ 4 as in (ii). To determine $a \mod 81$ we modify our approach.

Let $\tilde{a} = a$ rem 81, $\tilde{x} = x^2$ and $\tilde{g} = g^2$, so that \tilde{a} is determined by $\tilde{x} = \tilde{g}^{\tilde{a}}$. The idea is now, to use the *p*-adic extension $\tilde{a} = \sum_{i=0}^{3} a_i 3^i$ with $a_i \in \{0, 1, 2\}$. Deduce the value of a_0 from $\tilde{x}^{27} = (\tilde{g}^{27})^{\tilde{a}} = (\tilde{g}^{27})^{a_0}$. (Give a justification for the last equality.) After that consider $\tilde{x}^9 = (\tilde{g}^9)^{\tilde{a}} = (\tilde{g}^9)^{a_0} (\tilde{g}^{27})^{a_1}$ to deduce a_1 . (Again, justify the last equality.) Continue to compute \tilde{a} and combine it with the result for a modulo 2 to obtain a.