Cryptanalytic world records, summer 2014
 Daniel Loebenberger, Konstantin Ziegler

3. Exercise sheet Hand in solutions until Saturday, 26 April 2014, 23:59:59

Exercise 3.1 (Pollard rho for discrete logarithms).

Consider the group $G=\mathbb{Z}_{25}^{\times}$generated by the element $g=2 \in G$. Compute the 5 discrete logarithm of $x=17 \in G$ to the base g using the Pollard rho method. Use the partition $S_{0}=\{1,2,3,4,6,7,8\}, S_{1}=\{9,11,12,13,14,16,17\}$, and $S_{2}=$ $\{18,19,21,22,23,24\}$ of G, with 7,7 , and 6 elements, respectively. Hint: If the computation returns "failure" persist in computing the discrete logarithm by the method presented in the lecture.

Exercise 3.2 (Chinese remaindering for Discrete Logarithms).
(8 points)
(i) Let G be a cyclic group of size d and g be a generator of G. Let q be a divisor of d and consider the map $\pi: G \rightarrow G$, with $\pi(x)=x^{d / q}$. Prove that $\pi(G)=\left\{y \in G: y^{q}=1\right\}$.
(ii) Let $G=\mathbb{Z}_{p}^{\times}$with $p=2 \cdot 3 \cdot 5 \cdot 7+1, g=2, x=10$. Compute the discrete logarithm of x in base g using the Chinese remainder theorem.

Exercise 3.3 (DLP with CRT and Pohlig-Hellman).
Let G be the multiplicative group \mathbb{Z}_{73}^{\times}. Consider the two elements $g=5$ and $x=6$.
(i) Verify that g is a generator of G.
(ii) Compute $a=\operatorname{dlog}_{g} x$ as follows: Determine a modulo 8 from $x^{9}=\left(g^{9}\right)^{a}$. (The order of g^{9} is 8 .) Determine a modulo 9 from $x^{8}=\left(g^{8}\right)^{a}$. (The order of g^{8} is 9.) Combine these two congruences to compute a modulo 72.

Now let $G=\mathbb{Z}_{163}^{\times}, g=7$ and $x=20$.
(iii) Prove that $\operatorname{ord}(g)=162$.
(iv) Compute $a=\operatorname{dlog}_{g} x$ as follows: Determine a modulo 2 from $x^{81}=\left(g^{81}\right)^{a}$ as in (ii). To determine a modulo 81 we modify our approach.
Let $\tilde{a}=a$ rem $81, \tilde{x}=x^{2}$ and $\tilde{g}=g^{2}$, so that \tilde{a} is determined by $\tilde{x}=\tilde{g}^{\tilde{a}}$. The idea is now, to use the p-adic extension $\tilde{a}=\sum_{i=0}^{3} a_{i} 3^{i}$ with $a_{i} \in\{0,1,2\}$. Deduce the value of a_{0} from $\tilde{x}^{27}=\left(\tilde{g}^{27}\right)^{\tilde{a}}=\left(\tilde{g}^{27}\right)^{a_{0}}$. (Give a justification for the last equality.) After that consider $\tilde{x}^{9}=\left(\tilde{g}^{9}\right)^{\tilde{a}}=$ $\left(\tilde{g}^{9}\right)^{a_{0}}\left(\tilde{g}^{27}\right)^{a_{1}}$ to deduce a_{1}. (Again, justify the last equality.) Continue to compute \tilde{a} and combine it with the result for a modulo 2 to obtain a.

