
Cryptanalytic world records, summer 2014

World record! Discrete logarithms in GF(29234)

Dr. Daniel Loebenberger

CoseC b
-i
tComputer

SeCurity



Recall: Index calculus

We have a generator g for the multiplicative group Z
×

p = 〈g〉 of
units modulo p, of order d = p− 1, and want to compute dlogg x
for some given x ∈ Z

×

p . We choose a factor base {p1, . . . , ph}
consisting of the primes up to some bound B = ph.
In a preprocessing step, which does not depend on x, we choose
random exponents e←− Zp−1 and check if ge in
Z
×

p = {1, . . . , p− 1} is B-smooth. If it is, we find nonnegative
integers α1, . . . , αh with

ge = pα1

1 · · · p
αh

h in Z
×

p ,

e = α1 dlogg p1 + · · ·+ αh dlogg ph in Zp−1.
(⋆)

We collect enough of such relations until we can solve these linear
equations in Zp−1 for the dlogg pi. Typically, a little more than h

relations (⋆) will be enough, say h+ 10.

18/20



Recall: Index calculus

To solve the system of linear equations, we may factor p− 1, solve
modulo each prime power factor of p− 1, and piece the solutions
together via the Chinese Remainder Theorem.
At this point, we know dlogg p1, . . . , dlogg ph. Now on input x, we
choose random exponents e until some xge in Zp is B-smooth, say

xge = p
β1

1 · · · p
βh

h in Zp. Then

dlogg x = −e+ β1 dlogg p1 + · · ·+ βh dlogg ph in Zp−1.

17/20



average # of average # of average # of expected # of expected # of
B h relations for attempts to attempts until attempts to attempts to

unique solution find 1 rel. unique solution find 1 rel. find 1 rel.
(exact) (approx.)

5 3 5.41 3.97 21.47 3.77 38.3
7 4 7.27 2.74 19.9 2.70 12.4
11 5 10.06 2.31 23.2 2.22 4.96
13 6 12.19 1.92 23.4 1.91 3.91
17 7 16.82 1.74 29.23 1.72 2.87
19 8 22.95 1.62 37.2 1.59 2.58

16/20



Finding suitable relations is one important bottle-neck in this
approach!

15/20



There are finite fields in which we can speed-up the process of
finding relations considerably!

Definition

A finite field K admits a sparse medium subfield representation if

◮ K is isomorphic to Fq2k for some k ≥ 1.

◮ there are two polynomials h0 and h1 over Fq2 of small degree,
such that h1X

q − h0 has a degree k irreducible factor.

Think of these fields for the moment as “nice” in some suitable sense :)

14/20



Theorem

Let K = Fq2k be a “nice” finite field. Under certain heuristics,
there exists an algorithm whose complexity is polynomial in q and
k, which can be used for the following two tasks:

1. Given an element of K, represented as a polynomial
P ∈ Fq2 [X] with 2 ≤ degP < k, find a representation of
logP (X) as a linear combination of at most O(kq2)
logarithms logPi(X) with degPi ≤ ⌈

1
2 degP ⌉ and of

logh1(X).

2. Find the logarithm of h1(X) and the logarithm of all elements
of K that are represented by linear polynomials X + a for
a ∈ Fq2 .

13/20



Theorem

Let K = Fq2k be a “nice” finite field. Under certain heuristics, any
discrete logarithm in K can be computed in time bounded by
max(q, k)O(log k).

12/20



Corollary

For finite fields of size Q = q2k with q ≈ k, there exists a heuristic
quasi-polynomial time algorithm for computing discrete logarithms,
which runs in time 2O((log logQ)2).

11/20



Corollary

For finite fields of size Q and characteristic bounded by (logQ)O(1),
there exists a heuristic quasi-polynomial time algorithm for
computing discrete logarithms, which runs in time 2O((log logQ)2).

10/20



Corollary

For finite fields of size Q = q2k with q ≤ LQ(α), where
LQ(α) = exp(O((logQ)α(log logQ)1−α)), there exists a heuristic
sub-exponential time algorithm for computing discrete logarithms,
which runs in time LQ(α)

O(log logQ).

9/20



Tool: Projective geometry

Let k be any field. Think of it as the affine line. We want to define
what is called the projective line P

1(k). The idea is to embed k in
k2 with second coordinate equal to 1:

k −→ k2,

a 7−→ (a, 1)
.

Next, a point a in the affine line k corresponds to the point (a, 1)
which in turn defines and is given by a line through the origin of k2

and this point (a, 1). Observe that one line does not correspond to
a point, actually exactly the one that is parallel to the line b = 1.
Now, the projective line P1(k) is the set of all pairs a : b, where not
both a and b are zero. Two such pairs a1 : b1 and a2 : b2 are equal
if there is a nonzero constant α ∈ k with a1 = αa2 and b1 = αb2.

8/20



Goal:

Given any polynomial P ∈ Fq2 [X] of degree 1 ≤ D < k. Find a
relation between P (X) and its translates.

Use the systematic equation

Xq −X =
∏

a∈Fq

(X − a).

Choose a set S = {(α, β)} of representatives of the q + 1 points
(α : β) ∈ P

1(Fq), such that the following systematic projective
equation holds:

XqY −XY q =
∏

(α,β)∈S

(βX − αY ).

Consider the transformations m =

(

a b

c d

)

∈ Fq2 and define

m · P = aP+b
cP+d

. Substitute X = aP + b and Y = cP + d in the
above equation.

7/20



We obtain

(aP+b)q(cP+d)−(aP+b)(cP+d)q = λ
∏

(α,β)∈S

P−x(m−1·(α : β))

for some suitable constant λ ∈ Fq2 and

P − x(m−1 · (α : β)) =

{

P − u , when m−1 · (α : β) = (u : 1)

1 , when m−1 · (α : β) = (1 : 0)
.

Using the field-equation Xq = h0(X)
h1(X) , we can rewrite the left-hand

side with smaller degree polynomials, writing P̃ for the polynomial,
where all coefficients are raised to their q-th power:

(aqP̃ (
h0

h1
) + bq)(cP (X) + d)− (aP (X) + b)(cqP̃ (

h0

h1
) + dq).

If its numerator is ⌈D2 ⌉-smooth, we say that the transformation m

yields a relation.

6/20



Associate to every transformation m for which we obtained a
relation a row-vector v(m), indexed by all elements µ ∈ P

1(Fq2).
Its coordinates are defined in the following way:

v(m)µ∈P1(F
q2

) =

{

1 , if µ = m−1 · (α : β) ∈ P
1(Fq),

0 , otherwise.

Heuristic

For any P (X), the set of rows v(m) for which m yields a relation
form a matrix that has full rank q2 + 1.

If the heuristic is true, we can express the vector
(0, . . . , 0, 1, 0, . . . , 0) corresponding to the polynomial P (X) as a
sum of row-vectors and trace the computation using the smooth
representation we found for each row and solve the above stated
task of representing logP (X) as a linear combination of at most
O(kq2) logarithms logPi(X) with degPi ≤ ⌈

1
2 degP ⌉ and of

logh1(X).

5/20



For the other task of computing the logarithm of h1(X) and the
logarithm of all elements of K that are represented by linear
polynomials X + a for a ∈ Fq2 , we perform exactly the same
computation as above while setting P (X) = X.
Then only linear polynomials are involved and we can solve a linear
system whose unknowns are log(X + a).

Heuristic

For P (X) = X, the linear system from all collected equations form
a matrix that has full rank.

4/20



Theorem

Let K = Fq2k be a finite field that admits sparse medium subfield
representation. Under the above heuristics, there exists an
algorithm whose complexity is polynomial in q and k, which can be
used for the following two tasks:

1. Given an element of K, represented as a polynomial
P ∈ Fq2 [X] with 2 ≤ degP < k, find a representation of
logP (X) as a linear combination of at most O(kq2)
logarithms logPi(X) with degPi ≤ ⌈

1
2 degP ⌉ and of

logh1(X).

2. Find the logarithm of h1(X) and the logarithm of all elements
of K that are represented by linear polynomials X + a for
a ∈ Fq2 .

3/20



Theorem

Let ℓ be a prime not dividing q3 − q. Then the matrix H over Fℓ,
consisting of all rows corresponding to any transformation m has
full rank q2 + 1.

2/20



At present, the quasi-polynomial time algorithm for discrete
logarithms was not successfully implemented, yet. However, a
predecessor of the algorithm lead to the current world record.

1/20



Subject: Discrete Logarithms in GF(2^9234)

From: Jens Zumbrägel <[log in to unmask]>

Reply-To: Number Theory List <[log in to unmask]>

Date: Fri, 31 Jan 2014 07:59:39 -0600

Content-Type: text/plain

Parts/Attachments: text/plain (240 lines)

Dear Number Theorists,

We are pleased to announce a new record for the computation of

discrete logarithms in finite fields. In particular, we were able to

compute discrete logarithms in GF(2^9234) using about 400’000 core

hours. To our knowledge the previous record was announced on 21 May

2013 in (a multiplicative subgroup of) the field GF((2^24)^257) of

6168 bits [8].

[...]

The running time (in core hours) is as follows:

- relation generation 640 h (AMD: 6128 Opteron 2.0 GHz)

- linear algebra 258’048 h (Intel: Ivy Bridge 2.4 GHz)

- classical descent 134’889 h (Intel)

- Grobner basis descent 3’832 h (AMD)

- Pollard’s rho 13 h (AMD)

totalling in 397’422 core hours.

Robert Granger*, Thorsten Kleinjung*, Jens Zumbragel^
0/20


