Cryptanalytic world records, summer 2014

World record! Discrete logarithms in GF (2^{9234})

Dr. Daniel Loebenberger

Recall: Index calculus

We have a generator g for the multiplicative group $\mathbb{Z}_{p}^{\times}=\langle g\rangle$ of units modulo p, of order $d=p-1$, and want to compute $\operatorname{dlog}_{g} x$ for some given $x \in \mathbb{Z}_{p}^{\times}$. We choose a factor base $\left\{p_{1}, \ldots, p_{h}\right\}$ consisting of the primes up to some bound $B=p_{h}$.
In a preprocessing step, which does not depend on x, we choose random exponents $e \mathbb{Z}_{p-1}$ and check if g^{e} in
$\mathbb{Z}_{p}^{\times}=\{1, \ldots, p-1\}$ is B-smooth. If it is, we find nonnegative integers $\alpha_{1}, \ldots, \alpha_{h}$ with

$$
\begin{align*}
& g^{e}=p_{1}^{\alpha_{1}} \cdots p_{h}^{\alpha_{h}} \text { in } \mathbb{Z}_{p}^{\times} \\
& e=\alpha_{1} \operatorname{dlog}_{g} p_{1}+\cdots+\alpha_{h} \operatorname{dlog}_{g} p_{h} \text { in } \mathbb{Z}_{p-1} .
\end{align*}
$$

We collect enough of such relations until we can solve these linear equations in \mathbb{Z}_{p-1} for the $\operatorname{dlog}_{g} p_{i}$. Typically, a little more than h relations (\star) will be enough, say $h+10$.

Recall: Index calculus

To solve the system of linear equations, we may factor $p-1$, solve modulo each prime power factor of $p-1$, and piece the solutions together via the Chinese Remainder Theorem.
At this point, we know $\operatorname{dlog}_{g} p_{1}, \ldots, \operatorname{dlog}_{g} p_{h}$. Now on input x, we choose random exponents e until some $x g^{e}$ in \mathbb{Z}_{p} is B-smooth, say $x g^{e}=p_{1}^{\beta_{1}} \cdots p_{h}^{\beta_{h}}$ in \mathbb{Z}_{p}. Then

$$
\operatorname{dlog}_{g} x=-e+\beta_{1} \operatorname{dlog}_{g} p_{1}+\cdots+\beta_{h} \operatorname{dlog}_{g} p_{h} \text { in } \mathbb{Z}_{p-1}
$$

B	h	average \# of relations for unique solution	average \# of attempts to find 1 rel.	average \# of attempts until unique solution	expected \# of attempts to find 1 rel. (exact)	expected \# of attempts to find 1 rel. (approx.)
5	3	5.41	3.97	21.47	3.77	38.3
7	4	7.27	2.74	19.9	2.70	12.4
11	5	10.06	2.31	23.2	2.22	4.96
13	6	12.19	1.92	23.4	1.91	3.91
17	7	16.82	1.74	29.23	1.72	2.87
19	8	22.95	1.62	37.2	1.59	2.58

Finding suitable relations is one important bottle-neck in this approach!

There are finite fields in which we can speed-up the process of finding relations considerably!

Definition

A finite field K admits a sparse medium subfield representation if

- K is isomorphic to $\mathbb{F}_{q^{2 k}}$ for some $k \geq 1$.
- there are two polynomials h_{0} and h_{1} over $\mathbb{F}_{q^{2}}$ of small degree, such that $h_{1} X^{q}-h_{0}$ has a degree k irreducible factor.

Think of these fields for the moment as "nice" in some suitable sense :)

Theorem

Let $K=\mathbb{F}_{q^{2 k}}$ be a "nice" finite field. Under certain heuristics, there exists an algorithm whose complexity is polynomial in q and k, which can be used for the following two tasks:

1. Given an element of K, represented as a polynomial $P \in \mathbb{F}_{q^{2}}[X]$ with $2 \leq \operatorname{deg} P<k$, find a representation of $\log P(X)$ as a linear combination of at most $\mathrm{O}\left(k q^{2}\right)$ logarithms $\log P_{i}(X)$ with $\operatorname{deg} P_{i} \leq\left\lceil\frac{1}{2} \operatorname{deg} P\right\rceil$ and of $\log h_{1}(X)$.
2. Find the logarithm of $h_{1}(X)$ and the logarithm of all elements of K that are represented by linear polynomials $X+a$ for $a \in \mathbb{F}_{q^{2}}$.

Theorem

Let $K=\mathbb{F}_{q^{2 k}}$ be a "nice" finite field. Under certain heuristics, any discrete logarithm in K can be computed in time bounded by $\max (q, k)^{O(\log k)}$.

Corollary

For finite fields of size $Q=q^{2 k}$ with $q \approx k$, there exists a heuristic quasi-polynomial time algorithm for computing discrete logarithms, which runs in time $2^{\mathrm{O}\left((\log \log Q)^{2}\right)}$.

Corollary

For finite fields of size Q and characteristic bounded by $(\log Q)^{O(1)}$, there exists a heuristic quasi-polynomial time algorithm for computing discrete logarithms, which runs in time $2^{\mathrm{O}\left((\log \log Q)^{2}\right)}$.

Corollary

For finite fields of size $Q=q^{2 k}$ with $q \leq L_{Q}(\alpha)$, where $L_{Q}(\alpha)=\exp \left(\mathrm{O}\left((\log Q)^{\alpha}(\log \log Q)^{1-\alpha}\right)\right)$, there exists a heuristic sub-exponential time algorithm for computing discrete logarithms, which runs in time $L_{Q}(\alpha)^{\mathrm{O}(\log \log Q)}$.

Tool: Projective geometry

Let k be any field. Think of it as the affine line. We want to define what is called the projective line $\mathbb{P}^{1}(k)$. The idea is to embed k in k^{2} with second coordinate equal to 1 :

$$
\begin{aligned}
& k \longrightarrow k^{2} \\
& a \longmapsto(a, 1)
\end{aligned}
$$

Next, a point a in the affine line k corresponds to the point $(a, 1)$ which in turn defines and is given by a line through the origin of k^{2} and this point $(a, 1)$. Observe that one line does not correspond to a point, actually exactly the one that is parallel to the line $b=1$. Now, the projective line $\mathbb{P}^{1}(k)$ is the set of all pairs $a: b$, where not both a and b are zero. Two such pairs $a_{1}: b_{1}$ and $a_{2}: b_{2}$ are equal if there is a nonzero constant $\alpha \in k$ with $a_{1}=\alpha a_{2}$ and $b_{1}=\alpha b_{2}$.

Goal:

Given any polynomial $P \in F_{q^{2}}[X]$ of degree $1 \leq D<k$. Find a relation between $P(X)$ and its translates.

Use the systematic equation

$$
X^{q}-X=\prod_{a \in F_{q}}(X-a)
$$

Choose a set $S=\{(\alpha, \beta)\}$ of representatives of the $q+1$ points $(\alpha: \beta) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$, such that the following systematic projective equation holds:

$$
X^{q} Y-X Y^{q}=\prod_{(\alpha, \beta) \in S}(\beta X-\alpha Y)
$$

Consider the transformations $m=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{F}_{q^{2}}$ and define $m \cdot P=\frac{a P+b}{c P+d}$. Substitute $X=a P+b$ and $Y=c P+d$ in the above equation.

We obtain

$$
(a P+b)^{q}(c P+d)-(a P+b)(c P+d)^{q}=\lambda \prod_{(\alpha, \beta) \in S} P-x\left(m^{-1} \cdot(\alpha: \beta)\right)
$$

for some suitable constant $\lambda \in \mathbb{F}_{q^{2}}$ and

$$
P-x\left(m^{-1} \cdot(\alpha: \beta)\right)= \begin{cases}P-u & , \text { when } m^{-1} \cdot(\alpha: \beta)=(u: 1) \\ 1 & , \text { when } m^{-1} \cdot(\alpha: \beta)=(1: 0)\end{cases}
$$

Using the field-equation $X^{q}=\frac{h_{0}(X)}{h_{1}(X)}$, we can rewrite the left-hand side with smaller degree polynomials, writing \tilde{P} for the polynomial, where all coefficients are raised to their q-th power:

$$
\left(a^{q} \tilde{P}\left(\frac{h_{0}}{h_{1}}\right)+b^{q}\right)(c P(X)+d)-(a P(X)+b)\left(c^{q} \tilde{P}\left(\frac{h_{0}}{h_{1}}\right)+d^{q}\right)
$$

If its numerator is $\left\lceil\frac{D}{2}\right\rceil$-smooth, we say that the transformation m yields a relation.

Associate to every transformation m for which we obtained a relation a row-vector $v(m)$, indexed by all elements $\mu \in \mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)$. Its coordinates are defined in the following way:

$$
v(m)_{\mu \in \mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)}= \begin{cases}1 & , \text { if } \mu=m^{-1} \cdot(\alpha: \beta) \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right) \\ 0 & , \text { otherwise }\end{cases}
$$

Heuristic

For any $P(X)$, the set of rows $v(m)$ for which m yields a relation form a matrix that has full rank $q^{2}+1$.

If the heuristic is true, we can express the vector $(0, \ldots, 0,1,0, \ldots, 0)$ corresponding to the polynomial $P(X)$ as a sum of row-vectors and trace the computation using the smooth representation we found for each row and solve the above stated task of representing $\log P(X)$ as a linear combination of at most $\mathrm{O}\left(k q^{2}\right) \log$ arithms $\log P_{i}(X)$ with $\operatorname{deg} P_{i} \leq\left\lceil\frac{1}{2} \operatorname{deg} P\right\rceil$ and of $\log h_{1}(X)$.

For the other task of computing the logarithm of $h_{1}(X)$ and the logarithm of all elements of K that are represented by linear polynomials $X+a$ for $a \in \mathbb{F}_{q^{2}}$, we perform exactly the same computation as above while setting $P(X)=X$.
Then only linear polynomials are involved and we can solve a linear system whose unknowns are $\log (X+a)$.

Heuristic

For $P(X)=X$, the linear system from all collected equations form a matrix that has full rank.

Theorem

Let $K=\mathbb{F}_{q^{2 k}}$ be a finite field that admits sparse medium subfield representation. Under the above heuristics, there exists an algorithm whose complexity is polynomial in q and k, which can be used for the following two tasks:

1. Given an element of K, represented as a polynomial $P \in \mathbb{F}_{q^{2}}[X]$ with $2 \leq \operatorname{deg} P<k$, find a representation of $\log P(X)$ as a linear combination of at most $\mathrm{O}\left(k q^{2}\right)$ logarithms $\log P_{i}(X)$ with $\operatorname{deg} P_{i} \leq\left\lceil\frac{1}{2} \operatorname{deg} P\right\rceil$ and of $\log h_{1}(X)$.
2. Find the logarithm of $h_{1}(X)$ and the logarithm of all elements of K that are represented by linear polynomials $X+a$ for $a \in \mathbb{F}_{q^{2}}$.

Theorem
Let ℓ be a prime not dividing $q^{3}-q$. Then the matrix \mathcal{H} over \mathbb{F}_{ℓ}, consisting of all rows corresponding to any transformation m has full rank $q^{2}+1$.

At present, the quasi-polynomial time algorithm for discrete logarithms was not successfully implemented, yet. However, a predecessor of the algorithm lead to the current world record.

Subject: Discrete Logarithms in GF(2^9234)
From: Jens Zumbrägel <[log in to unmask]>
Reply-To: Number Theory List <[log in to unmask]>
Date: Fri, 31 Jan 2014 07:59:39 -0600
Content-Type: text/plain
Parts/Attachments: text/plain (240 lines)

Dear Number Theorists,

We are pleased to announce a new record for the computation of discrete logarithms in finite fields. In particular, we were able to compute discrete logarithms in GF(2^9234) using about 400'000 core hours. To our knowledge the previous record was announced on 21 May 2013 in (a multiplicative subgroup of) the field GF ($\left(2^{\wedge} 24\right)^{\wedge} 257$) of 6168 bits [8].
[...]

The running time (in core hours) is as follows:

- relation generation 640 h (AMD: 6128 Opteron 2.0 GHz)
- linear algebra $258^{\prime} 048 \mathrm{~h}$ (Intel: Ivy Bridge 2.4 GHz)
- classical descent 134'889 h (Intel)
- Grobner basis descent 3'832 h (AMD)
- Pollard's rho 13 h (AMD)
totalling in 397'422 core hours.

Robert Granger*, Thorsten Kleinjung*, Jens Zumbragel^

