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Recall: Index calculus

We have a generator g for the multiplicative group Z) = (g) of
units modulo p, of order d = p — 1, and want to compute dlogga;
for some given x € Z . We choose a factor base {p1,...,pn}
consisting of the primes up to some bound B = py,.

In a preprocessing step, which does not depend on x, we choose
random exponents e <% Zp—1 and check if g© in

Zy ={1,...,p— 1} is B-smooth. If it is, we find nonnegative
integers aq, ..., qp with

e

o= g ®
e = adloggp1 + -+ apdlog, ppin Zp_1.

We collect enough of such relations until we can solve these linear
equations in Z,_; for the dlog, p;. Typically, a little more than h
relations (x) will be enough, say h + 10.

18/20



Recall: Index calculus

To solve the system of linear equations, we may factor p — 1, solve
modulo each prime power factor of p — 1, and piece the solutions
together via the Chinese Remainder Theorem.

At this point, we know dlog, p1, ... ,dlog, pn. Now on input z, we
choose random exponents e until some xg° in Zj, is B-smooth, say

xg¢ = pfl . -pfh in Zy,. Then

dlog,z = —e+ Bidlogyp1 + -+ Brdlog,py in Zp—1.
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average # of

average # of

average # of

expected # of

expected # of

B | h relations for attempts to attempts until attempts to attempts to
unique solution find 1 rel. unique solution find 1 rel. find 1 rel.
(exact) (approx.)
5 3 5.41 3.97 21.47 3.77 38.3
7 4 7.27 2.74 19.9 2.70 12.4
11| 5 10.06 231 23.2 2.22 4.96
13 | 6 12.19 1.92 23.4 1.91 3.91
17 | 7 16.82 1.74 29.23 1.72 2.87
19 | 8 22.95 1.62 37.2 1.59 2.58
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Finding suitable relations is one important bottle-neck in this
approach!
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There are finite fields in which we can speed-up the process of

finding relations considerably!

Definition

A finite field K admits a sparse medium subfield representation if
» K is isomorphic to F o for some k > 1.

> there are two polynomials g and hy over FF 2 of small degree,
such that h1 X9 — hgy has a degree k irreducible factor.

Think of these fields for the moment as “nice” in some suitable sense :)
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Theorem

Let K = quk be a “nice” finite field. Under certain heuristics,
there exists an algorithm whose complexity is polynomial in ¢ and
k, which can be used for the following two tasks:

1. Given an element of K, represented as a polynomial
P € Fp2[X] with 2 < deg P < Fk, find a representation of
log P(X) as a linear combination of at most O(kq?)
logarithms log P;(X) with deg P, < [4 deg P] and of
log h1(X).

2. Find the logarithm of h;(X) and the logarithm of all elements
of K that are represented by linear polynomials X + a for
a < FqQ.
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Theorem

Let K = F o, be a “nice” finite field. Under certain heuristics, any
discrete logarithm in K can be computed in time bounded by

max (g, k)©Uo8 k),
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Corollary

For finite fields of size Q = ¢* with ¢ &~ k, there exists a heuristic
quasi-polynomial time algorithm for computing discrete logarithms,
which runs in time 20((loglog @)%),
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Corollary

For finite fields of size Q and characteristic bounded by (log Q)°™),
there exists a heuristic quasi-polynomial time algorithm for
computing discrete logarithms, which runs in time 20((log log Q)%
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Corollary

For finite fields of size Q = ¢%* with ¢ < Lg(a), where

Lo () = exp(O((log Q)*(log log Q) *)), there exists a heuristic
sub-exponential time algorithm for computing discrete logarithms,
which runs in time Lg()C(o8logQ),
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Tool: Projective geometry

Let k£ be any field. Think of it as the affine line. We want to define
what is called the projective line P!(k). The idea is to embed k in
k2 with second coordinate equal to 1:

E — k2
a +— (a,1) "

Next, a point a in the affine line k corresponds to the point (a, 1)
which in turn defines and is given by a line through the origin of k2
and this point (a,1). Observe that one line does not correspond to
a point, actually exactly the one that is parallel to the line b = 1.
Now, the projective line P! (k) is the set of all pairs a : b, where not
both a and b are zero. Two such pairs a1 : by and as : by are equal
if there is a nonzero constant o € k with a; = aas and by = abs.
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Goal:

Given any polynomial P € F2[X] of degree 1 < D < k. Find a
relation between P(X) and its translates.

Use the systematic equation

X1-X=]](X-a).
acky

Choose a set S = {(«, 3)} of representatives of the ¢ + 1 points
(a: B) € PL(F,), such that the following systematic projective
equation holds:

XY -xvi= [] (BX —aY).

(a,8)€S
Consider the transformations m = <CCL Z) € qu and define
m- P = 20+t Supstitute X = aP + b and Y = ¢P + d in the

cP+d’
above equation.
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We obtain

(aP+b)!(cP+d)—(aP+b)(cP+d)? =X [[ P-x(m '-(a:p))
(a,B)ES

for some suitable constant A\ € qu and

P—u ,whenm™! - (a:8)=(u:1)

P—x(m‘l-(oz:ﬁ))Z{1 when m~' - (a:f)=(1:0)"

Using the field-equation X7 = Z‘fg; we can rewrite the left-hand

side with smaller degree polynomials, writing P for the polynomial,
where all coefficients are raised to their ¢g-th power:

(aqP(Z—‘i) + b9)(cP(X) +d) — (aP(X) + b)(ch(Z—?) + d7).

If its numerator is (gl—smooth, we say that the transformation m
yields a relation.
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Associate to every transformation m for which we obtained a
relation a row-vector v(m), indexed by all elements ;i € P1(F2).
Its coordinates are defined in the following way:

1 ,ifu=m-"1. : PY(F,),
U(m)uepl(FqQ):{O it p=m (a: p) € PH(IFy)

, otherwise.

Heuristic

For any P(X), the set of rows v(m) for which m yields a relation
form a matrix that has full rank ¢ + 1.

If the heuristic is true, we can express the vector
(0,...,0,1,0,...,0) corresponding to the polynomial P(X) as a
sum of row-vectors and trace the computation using the smooth
representation we found for each row and solve the above stated
task of representing log P(X) as a linear combination of at most
O(kq?) logarithms log P;(X) with deg P; < [ deg P] and of

log h1(X).
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For the other task of computing the logarithm of h1(X) and the
logarithm of all elements of K that are represented by linear
polynomials X + a for a € F 2, we perform exactly the same
computation as above while setting P(X) = X.

Then only linear polynomials are involved and we can solve a linear
system whose unknowns are log(X + a).

Heuristic

For P(X) = X, the linear system from all collected equations form
a matrix that has full rank.
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Theorem

Let K = F 2 be a finite field that admits sparse medium subfield
representation. Under the above heuristics, there exists an
algorithm whose complexity is polynomial in ¢ and k, which can be
used for the following two tasks:

1. Given an element of K, represented as a polynomial
P € Fp2[X] with 2 < deg P < Fk, find a representation of
log P(X) as a linear combination of at most O(kq?)
logarithms log P;(X) with deg P; < [1 deg P] and of
log h1(X).

2. Find the logarithm of h;(X) and the logarithm of all elements
of K that are represented by linear polynomials X + a for
a < FqQ.
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Theorem

Let ¢ be a prime not dividing ¢> — ¢. Then the matrix H over Fy,
consisting of all rows corresponding to any transformation m has
full rank ¢% + 1.
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At present, the quasi-polynomial time algorithm for discrete
logarithms was not successfully implemented, yet. However, a
predecessor of the algorithm lead to the current world record.
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Subject: Discrete Logarithms in GF(279234)

From: Jens Zumbrédgel <[log in to unmask]>
Reply-To: Number Theory List <[log in to unmask]>
Date: Fri, 31 Jan 2014 07:59:39 -0600
Content-Type: text/plain

Parts/Attachments: text/plain (240 lines)

Dear Number Theorists,

We are pleased to announce a new record for the computation of
discrete logarithms in finite fields. In particular, we were able to
compute discrete logarithms in GF(279234) using about 400’000 core
hours. To our knowledge the previous record was announced on 21 May
2013 in (a multiplicative subgroup of) the field GF((2724)°257) of
6168 bits [8].

[...]

The running time (in core hours) is as follows:

- relation generation 640 h (AMD: 6128 Opteron 2.0 GHz)
- linear algebra 258’048 h (Intel: Ivy Bridge 2.4 GHz)
- classical descent 134°889 h (Intel)

- Grobner basis descent 3’832 h  (AMD)

- Pollard’s rho 13 h  (AMD)

totalling in 397’422 core hours.

Robert Granger*, Thorsten Kleinjung#*, Jens Zumbragel~
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