Cryptanalytic world records, summer 2014

World record! Discrete logarithms in $\text{GF}(2^{9234})$

Dr. Daniel Loebenberger
Recall: Index calculus

We have a generator \(g \) for the multiplicative group \(\mathbb{Z}_p^\times = \langle g \rangle \) of units modulo \(p \), of order \(d = p - 1 \), and want to compute \(\text{dlog}_g x \) for some given \(x \in \mathbb{Z}_p^\times \). We choose a factor base \(\{p_1, \ldots, p_h\} \) consisting of the primes up to some bound \(B = p_h \).

In a preprocessing step, which does not depend on \(x \), we choose random exponents \(e \leftarrow \mathbb{Z}_{p-1} \) and check if \(g^e \) in \(\mathbb{Z}_p^\times = \{1, \ldots, p - 1\} \) is \(B \)-smooth. If it is, we find nonnegative integers \(\alpha_1, \ldots, \alpha_h \) with

\[
\begin{align*}
g^e &= p_1^{\alpha_1} \cdots p_h^{\alpha_h} \text{ in } \mathbb{Z}_p^\times, \\
e &= \alpha_1 \text{dlog}_g p_1 + \cdots + \alpha_h \text{dlog}_g p_h \text{ in } \mathbb{Z}_{p-1}.
\end{align*}
\]

We collect enough of such relations until we can solve these linear equations in \(\mathbb{Z}_{p-1} \) for the \(\text{dlog}_g p_i \). Typically, a little more than \(h \) relations (\(\star \)) will be enough, say \(h + 10 \).
Recall: Index calculus

To solve the system of linear equations, we may factor $p - 1$, solve modulo each prime power factor of $p - 1$, and piece the solutions together via the Chinese Remainder Theorem.

At this point, we know $\text{dlog}_g p_1, \ldots, \text{dlog}_g p_h$. Now on input x, we choose random exponents e until some $x g^e$ in \mathbb{Z}_p is B-smooth, say $x g^e = p_1^{\beta_1} \cdots p_h^{\beta_h}$ in \mathbb{Z}_p. Then

\[
\text{dlog}_g x = -e + \beta_1 \text{dlog}_g p_1 + \cdots + \beta_h \text{dlog}_g p_h \text{ in } \mathbb{Z}_{p-1}.
\]
<table>
<thead>
<tr>
<th>B</th>
<th>h</th>
<th>average # of relations for unique solution</th>
<th>average # of attempts to find 1 rel.</th>
<th>average # of attempts until unique solution</th>
<th>expected # of attempts to find 1 rel. (exact)</th>
<th>expected # of attempts to find 1 rel. (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>5.41</td>
<td>3.97</td>
<td>21.47</td>
<td>3.77</td>
<td>38.3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>7.27</td>
<td>2.74</td>
<td>19.9</td>
<td>2.70</td>
<td>12.4</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>10.06</td>
<td>2.31</td>
<td>23.4</td>
<td>2.22</td>
<td>4.96</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>12.19</td>
<td>1.92</td>
<td>23.4</td>
<td>1.91</td>
<td>3.91</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>16.82</td>
<td>1.74</td>
<td>29.23</td>
<td>1.72</td>
<td>2.87</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>22.95</td>
<td>1.62</td>
<td>37.2</td>
<td>1.59</td>
<td>2.58</td>
</tr>
</tbody>
</table>
Finding suitable relations is one important bottle-neck in this approach!
There are finite fields in which we can speed-up the process of finding relations considerably!

Definition

A finite field K admits a *sparse medium subfield representation* if

- K is isomorphic to $\mathbb{F}_{q^{2k}}$ for some $k \geq 1$.
- there are two polynomials h_0 and h_1 over \mathbb{F}_{q^2} of small degree, such that $h_1X^q - h_0$ has a degree k irreducible factor.

Think of these fields for the moment as “nice” in some suitable sense :)

Theorem

Let $K = \mathbb{F}_{q^{2k}}$ be a “nice” finite field. Under certain heuristics, there exists an algorithm whose complexity is polynomial in q and k, which can be used for the following two tasks:

1. Given an element of K, represented as a polynomial $P \in \mathbb{F}_{q^2}[X]$ with $2 \leq \deg P < k$, find a representation of $\log P(X)$ as a linear combination of at most $O(kq^2)$ logarithms $\log P_i(X)$ with $\deg P_i \leq \lceil \frac{1}{2} \deg P \rceil$ and of $\log h_1(X)$.

2. Find the logarithm of $h_1(X)$ and the logarithm of all elements of K that are represented by linear polynomials $X + a$ for $a \in \mathbb{F}_{q^2}$.
Theorem

Let $K = \mathbb{F}_{q^{2k}}$ be a “nice” finite field. Under certain heuristics, any discrete logarithm in K can be computed in time bounded by $\max(q, k)^{O(\log k)}$.
Corollary

For finite fields of size $Q = q^{2k}$ with $q \approx k$, there exists a heuristic quasi-polynomial time algorithm for computing discrete logarithms, which runs in time $2^{O((\log \log Q)^2)}$.
Corollary

For finite fields of size Q and characteristic bounded by $(\log Q)^{O(1)}$, there exists a heuristic quasi-polynomial time algorithm for computing discrete logarithms, which runs in time $2^{O((\log \log Q)^2)}$.
Corollary

For finite fields of size $Q = q^{2^k}$ with $q \leq L_Q(\alpha)$, where $L_Q(\alpha) = \exp(O((\log Q)^\alpha (\log \log Q)^{1-\alpha}))$, there exists a heuristic sub-exponential time algorithm for computing discrete logarithms, which runs in time $L_Q(\alpha)^{O(\log \log Q)}$.
Tool: Projective geometry

Let k be any field. Think of it as the affine line. We want to define what is called the projective line $\mathbb{P}^1(k)$. The idea is to embed k in k^2 with second coordinate equal to 1:

\[
\begin{align*}
k & \longrightarrow k^2, \\
a & \longmapsto (a, 1).
\end{align*}
\]

Next, a point a in the affine line k corresponds to the point $(a, 1)$ which in turn defines and is given by a line through the origin of k^2 and this point $(a, 1)$. Observe that one line does not correspond to a point, actually exactly the one that is parallel to the line $b = 1$.

Now, the projective line $\mathbb{P}^1(k)$ is the set of all pairs $a : b$, where not both a and b are zero. Two such pairs $a_1 : b_1$ and $a_2 : b_2$ are equal if there is a nonzero constant $\alpha \in k$ with $a_1 = \alpha a_2$ and $b_1 = \alpha b_2$.
Goal:

Given any polynomial $P \in F_{q^2}[X]$ of degree $1 \leq D < k$. Find a relation between $P(X)$ and its translates.

Use the systematic equation

$$X^q - X = \prod_{a \in F_q} (X - a).$$

Choose a set $S = \{ (\alpha, \beta) \}$ of representatives of the $q + 1$ points $(\alpha : \beta) \in \mathbb{P}^1(F_q)$, such that the following systematic projective equation holds:

$$X^q Y - XY^q = \prod_{(\alpha, \beta) \in S} (\beta X - \alpha Y).$$

Consider the transformations $m = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in F_{q^2}$ and define $m \cdot P = \frac{aP + b}{cP + d}$. Substitute $X = aP + b$ and $Y = cP + d$ in the above equation.
We obtain

\[(aP+b)^q(cP+d)-(aP+b)(cP+d)^q = \lambda \prod_{(\alpha,\beta) \in S} P-x(m^{-1}\cdot(\alpha : \beta))\]

for some suitable constant \(\lambda \in \mathbb{F}_{q^2}\) and

\[P-x(m^{-1}\cdot(\alpha : \beta)) = \begin{cases} P-u & \text{, when } m^{-1}\cdot(\alpha : \beta) = (u : 1) \\ 1 & \text{, when } m^{-1}\cdot(\alpha : \beta) = (1 : 0) \end{cases} \]

Using the field-equation \(X^q = \frac{h_0(X)}{h_1(X)}\), we can rewrite the left-hand side with smaller degree polynomials, writing \(\tilde{P}\) for the polynomial, where all coefficients are raised to their \(q\)-th power:

\[(a^q\tilde{P}(\frac{h_0}{h_1}) + b^q)(cP(X) + d) - (aP(X) + b)(c^q\tilde{P}(\frac{h_0}{h_1}) + d^q).\]

If its numerator is \(\lceil \frac{D}{2} \rceil\)-smooth, we say that the transformation \(m\) yields a relation.
Associate to every transformation m for which we obtained a relation a row-vector $v(m)$, indexed by all elements $\mu \in \mathbb{P}^1(\mathbb{F}_{q^2})$. Its coordinates are defined in the following way:

$$v(m)_{\mu \in \mathbb{P}^1(\mathbb{F}_{q^2})} = \begin{cases} 1, & \text{if } \mu = m^{-1} \cdot (\alpha : \beta) \in \mathbb{P}^1(\mathbb{F}_q), \\ 0, & \text{otherwise.} \end{cases}$$

Heuristic

For any $P(X)$, the set of rows $v(m)$ for which m yields a relation form a matrix that has full rank $q^2 + 1$.

If the heuristic is true, we can express the vector $(0, \ldots, 0, 1, 0, \ldots, 0)$ corresponding to the polynomial $P(X)$ as a sum of row-vectors and trace the computation using the smooth representation we found for each row and solve the above stated task of representing $\log P(X)$ as a linear combination of at most $O(kq^2)$ logarithms $\log P_i(X)$ with $\deg P_i \leq \lceil \frac{1}{2} \deg P \rceil$ and of $\log h_1(X)$.

5/20
For the other task of computing the logarithm of $h_1(X)$ and the logarithm of all elements of K that are represented by linear polynomials $X + a$ for $a \in \mathbb{F}_{q^2}$, we perform exactly the same computation as above while setting $P(X) = X$. Then only linear polynomials are involved and we can solve a linear system whose unknowns are $\log(X + a)$.

Heuristic

For $P(X) = X$, the linear system from all collected equations form a matrix that has full rank.
Theorem

Let $K = \mathbb{F}_{q^{2k}}$ be a finite field that admits sparse medium subfield representation. Under the above heuristics, there exists an algorithm whose complexity is polynomial in q and k, which can be used for the following two tasks:

1. Given an element of K, represented as a polynomial $P \in \mathbb{F}_{q^2}[X]$ with $2 \leq \deg P < k$, find a representation of $\log P(X)$ as a linear combination of at most $O(kq^2)$ logarithms $\log P_i(X)$ with $\deg P_i \leq \lceil \frac{1}{2} \deg P \rceil$ and of $\log h_1(X)$.

2. Find the logarithm of $h_1(X)$ and the logarithm of all elements of K that are represented by linear polynomials $X + a$ for $a \in \mathbb{F}_{q^2}$.
Theorem

Let ℓ be a prime not dividing $q^3 - q$. Then the matrix \mathcal{H} over \mathbb{F}_ℓ, consisting of all rows corresponding to any transformation m has full rank $q^2 + 1$.
At present, the quasi-polynomial time algorithm for discrete logarithms was not successfully implemented, yet. However, a predecessor of the algorithm lead to the current world record.
Dear Number Theorists,

We are pleased to announce a new record for the computation of discrete logarithms in finite fields. In particular, we were able to compute discrete logarithms in GF(2^9234) using about 400’000 core hours. To our knowledge the previous record was announced on 21 May 2013 in (a multiplicative subgroup of) the field GF((2^24)^257) of 6168 bits [8].

The running time (in core hours) is as follows:
- relation generation 640 h (AMD: 6128 Opteron 2.0 GHz)
- linear algebra 258’048 h (Intel: Ivy Bridge 2.4 GHz)
- classical descent 134’889 h (Intel)
- Grobner basis descent 3’832 h (AMD)
- Pollard’s rho 13 h (AMD)

totalling in 397’422 core hours.

Robert Granger*, Thorsten Kleinjung*, Jens Zumbragel^