Cryptanalytic world records, summer 2014 World record! Discrete logarithms in $GF(2^{9234})$

Dr. Daniel Loebenberger

Recall: Index calculus

We have a generator g for the multiplicative group $\mathbb{Z}_p^{\times} = \langle g \rangle$ of units modulo p, of order d = p - 1, and want to compute $\operatorname{dlog}_g x$ for some given $x \in \mathbb{Z}_p^{\times}$. We choose a *factor base* $\{p_1, \ldots, p_h\}$ consisting of the primes up to some bound $B = p_h$. In a preprocessing step, which does not depend on x, we choose random exponents $e \xleftarrow{\operatorname{dep}} \mathbb{Z}_{p-1}$ and check if g^e in $\mathbb{Z}_p^{\times} = \{1, \ldots, p-1\}$ is B-smooth. If it is, we find nonnegative integers $\alpha_1, \ldots, \alpha_h$ with

$$\begin{array}{lll} g^e & = & p_1^{\alpha_1} \cdots p_h^{\alpha_h} \text{ in } \mathbb{Z}_p^{\times}, \\ e & = & \alpha_1 \operatorname{dlog}_g p_1 + \cdots + \alpha_h \operatorname{dlog}_g p_h \text{ in } \mathbb{Z}_{p-1}. \end{array} \tag{\star}$$

We collect enough of such *relations* until we can solve these linear equations in \mathbb{Z}_{p-1} for the dlog_g p_i . Typically, a little more than h relations (\star) will be enough, say h + 10.

Recall: Index calculus

To solve the system of linear equations, we may factor p-1, solve modulo each prime power factor of p-1, and piece the solutions together via the Chinese Remainder Theorem.

At this point, we know $\operatorname{dlog}_g p_1, \ldots, \operatorname{dlog}_g p_h$. Now on input x, we choose random exponents e until some xg^e in \mathbb{Z}_p is B-smooth, say $xg^e = p_1^{\beta_1} \cdots p_h^{\beta_h}$ in \mathbb{Z}_p . Then

$$\operatorname{dlog}_g x = -e + \beta_1 \operatorname{dlog}_g p_1 + \dots + \beta_h \operatorname{dlog}_g p_h \text{ in } \mathbb{Z}_{p-1}.$$

	В	h	average # of relations for unique solution	average # of attempts to find 1 rel.	average # of attempts until unique solution	expected # of attempts to find 1 rel. (exact)	expected # of attempts to find 1 rel. (approx.)
-	5	3	5.41	3.97	21.47	3.77	38.3
	7	4	7.27	2.74	19.9	2.70	12.4
	11	5	10.06	2.31	23.2	2.22	4.96
	13	6	12.19	1.92	23.4	1.91	3.91
	17	7	16.82	1.74	29.23	1.72	2.87
	19	8	22.95	1.62	37.2	1.59	2.58

Finding suitable relations is one important bottle-neck in this approach!

There are finite fields in which we can speed-up the process of finding relations considerably!

Definition

A finite field K admits a sparse medium subfield representation if

- K is isomorphic to $\mathbb{F}_{q^{2k}}$ for some $k \geq 1$.
- ▶ there are two polynomials h_0 and h_1 over \mathbb{F}_{q^2} of small degree, such that $h_1 X^q h_0$ has a degree k irreducible factor.

Think of these fields for the moment as "nice" in some suitable sense :)

Let $K = \mathbb{F}_{q^{2k}}$ be a "nice" finite field. Under certain heuristics, there exists an algorithm whose complexity is polynomial in q and k, which can be used for the following two tasks:

- 1. Given an element of K, represented as a polynomial $P \in \mathbb{F}_{q^2}[X]$ with $2 \leq \deg P < k$, find a representation of $\log P(X)$ as a linear combination of at most $O(kq^2)$ logarithms $\log P_i(X)$ with $\deg P_i \leq \lceil \frac{1}{2} \deg P \rceil$ and of $\log h_1(X)$.
- 2. Find the logarithm of $h_1(X)$ and the logarithm of all elements of K that are represented by linear polynomials X + a for $a \in \mathbb{F}_{q^2}$.

Let $K=\mathbb{F}_{q^{2k}}$ be a "nice" finite field. Under certain heuristics, any discrete logarithm in K can be computed in time bounded by $\max(q,k)^{O(\log k)}.$

Corollary

For finite fields of size $Q = q^{2k}$ with $q \approx k$, there exists a heuristic quasi-polynomial time algorithm for computing discrete logarithms, which runs in time $2^{O((\log \log Q)^2)}$.

Corollary

For finite fields of size Q and characteristic bounded by $(\log Q)^{O(1)}$, there exists a heuristic quasi-polynomial time algorithm for computing discrete logarithms, which runs in time $2^{O((\log \log Q)^2)}$.

Corollary

For finite fields of size $Q=q^{2k}$ with $q\leq L_Q(\alpha)$, where $L_Q(\alpha)=\exp(\mathsf{O}((\log Q)^\alpha(\log\log Q)^{1-\alpha}))$, there exists a heuristic sub-exponential time algorithm for computing discrete logarithms, which runs in time $L_Q(\alpha)^{\mathsf{O}(\log\log Q)}$.

Tool: Projective geometry

Let k be any field. Think of it as the *affine line*. We want to define what is called the projective line $\mathbb{P}^1(k)$. The idea is to embed k in k^2 with second coordinate equal to 1:

$$\begin{array}{rccc} k & \longrightarrow & k^2, \\ a & \longmapsto & (a,1) \end{array}$$

Next, a point a in the affine line k corresponds to the point (a, 1) which in turn defines and is given by a line through the origin of k^2 and this point (a, 1). Observe that one line does not correspond to a point, actually exactly the one that is parallel to the line b = 1. Now, the *projective line* $\mathbb{P}^1(k)$ is the set of all pairs a: b, where not both a and b are zero. Two such pairs $a_1: b_1$ and $a_2: b_2$ are equal if there is a nonzero constant $\alpha \in k$ with $a_1 = \alpha a_2$ and $b_1 = \alpha b_2$. Goal:

Given any polynomial $P \in F_{q^2}[X]$ of degree $1 \le D < k$. Find a relation between P(X) and its translates.

Use the systematic equation

$$X^q - X = \prod_{a \in F_q} (X - a).$$

Choose a set $S = \{(\alpha, \beta)\}$ of representatives of the q + 1 points $(\alpha : \beta) \in \mathbb{P}^1(\mathbb{F}_q)$, such that the following systematic projective equation holds:

$$X^{q}Y - XY^{q} = \prod_{(\alpha,\beta)\in S} (\beta X - \alpha Y).$$

Consider the transformations $m = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{F}_{q^2}$ and define $m \cdot P = \frac{aP+b}{cP+d}$. Substitute X = aP + b and Y = cP + d in the above equation.

We obtain

$$(aP+b)^q(cP+d) - (aP+b)(cP+d)^q = \lambda \prod_{(\alpha,\beta) \in S} P - \mathsf{x}(m^{-1} \cdot (\alpha:\beta))$$

for some suitable constant $\lambda \in \mathbb{F}_{q^2}$ and

$$P - \mathsf{x}(m^{-1} \cdot (\alpha : \beta)) = \begin{cases} P - u & \text{, when } m^{-1} \cdot (\alpha : \beta) = (u : 1) \\ 1 & \text{, when } m^{-1} \cdot (\alpha : \beta) = (1 : 0) \end{cases}$$

Using the field-equation $X^q = \frac{h_0(X)}{h_1(X)}$, we can rewrite the left-hand side with smaller degree polynomials, writing \tilde{P} for the polynomial, where all coefficients are raised to their *q*-th power:

$$(a^q \tilde{P}(\frac{h_0}{h_1}) + b^q)(cP(X) + d) - (aP(X) + b)(c^q \tilde{P}(\frac{h_0}{h_1}) + d^q).$$

If its numerator is $\lceil \frac{D}{2} \rceil$ -smooth, we say that the transformation m yields a *relation*.

Associate to every transformation m for which we obtained a relation a row-vector v(m), indexed by all elements $\mu \in \mathbb{P}^1(\mathbb{F}_{q^2})$. Its coordinates are defined in the following way:

$$v(m)_{\mu\in\mathbb{P}^1(\mathbb{F}_{q^2})} = \begin{cases} 1 & \text{, if } \mu = m^{-1} \cdot (\alpha:\beta) \in \mathbb{P}^1(\mathbb{F}_q), \\ 0 & \text{, otherwise.} \end{cases}$$

Heuristic

For any P(X), the set of rows v(m) for which m yields a relation form a matrix that has full rank $q^2 + 1$.

If the heuristic is true, we can express the vector $(0,\ldots,0,1,0,\ldots,0)$ corresponding to the polynomial P(X) as a sum of row-vectors and trace the computation using the smooth representation we found for each row and solve the above stated task of representing $\log P(X)$ as a linear combination of at most $\mathsf{O}(kq^2)$ logarithms $\log P_i(X)$ with $\deg P_i \leq \lceil \frac{1}{2} \deg P \rceil$ and of $\log h_1(X)$.

For the other task of computing the logarithm of $h_1(X)$ and the logarithm of all elements of K that are represented by linear polynomials X + a for $a \in \mathbb{F}_{q^2}$, we perform exactly the same computation as above while setting P(X) = X. Then only linear polynomials are involved and we can solve a linear system whose unknowns are $\log(X + a)$.

Heuristic

For P(X) = X, the linear system from all collected equations form a matrix that has full rank.

Let $K = \mathbb{F}_{q^{2k}}$ be a finite field that admits sparse medium subfield representation. Under the above heuristics, there exists an algorithm whose complexity is polynomial in q and k, which can be used for the following two tasks:

- 1. Given an element of K, represented as a polynomial $P \in \mathbb{F}_{q^2}[X]$ with $2 \leq \deg P < k$, find a representation of $\log P(X)$ as a linear combination of at most $O(kq^2)$ logarithms $\log P_i(X)$ with $\deg P_i \leq \lceil \frac{1}{2} \deg P \rceil$ and of $\log h_1(X)$.
- 2. Find the logarithm of $h_1(X)$ and the logarithm of all elements of K that are represented by linear polynomials X + a for $a \in \mathbb{F}_{q^2}$.

Let ℓ be a prime not dividing $q^3 - q$. Then the matrix \mathcal{H} over \mathbb{F}_{ℓ} , consisting of *all* rows corresponding to *any* transformation m has full rank $q^2 + 1$.

At present, the quasi-polynomial time algorithm for discrete logarithms was *not* successfully implemented, yet. However, a predecessor of the algorithm lead to the current world record.

```
Subject: Discrete Logarithms in GF(2^9234)
From: Jens Zumbrägel <[log in to unmask]>
Reply-To: Number Theory List <[log in to unmask]>
Date: Fri, 31 Jan 2014 07:59:39 -0600
Content-Type: text/plain
Parts/Attachments: text/plain (240 lines)
```

Dear Number Theorists,

We are pleased to announce a new record for the computation of discrete logarithms in finite fields. In particular, we were able to compute discrete logarithms in GF(2^{9234}) using about 400'000 core hours. To our knowledge the previous record was announced on 21 May 2013 in (a multiplicative subgroup of) the field GF($(2^{24})^{257}$) of 6168 bits [8].

[...]

The running time (in core hours) is as follows:

-	relation generation	640	h	(AMD: 6128 Opteron 2	2.0	GHz)			
-	linear algebra	258'048	h	(Intel: Ivy Bridge	2.4	GHz)			
-	classical descent	134'889	h	(Intel)					
-	Grobner basis descent	3'832	h	(AMD)					
-	Pollard's rho	13	h	(AMD)					

totalling in 397'422 core hours.

Robert Granger*, Thorsten Kleinjung*, Jens Zumbragel^