Cryptanalytic world records, summer 2014 Daniel Loebenberger, Konstantin Ziegler

4. Exercise sheet Hand in solutions until Saturday, 03 May 2014, 23:59:59

J, J	•	
Exercise 4.1 (Quasi-polynomial time).	(4 points)	
In the lecture we encountered what is called quasi-poly $n^{O(\log n)}$ in a parameter n .	nomial complexity	
(i) Prove that this complexity is larger than any polynom	ial complexity in n .	2
(ii) Prove that this complexity is smaller than any sub-exity in n .	ponential complex-	2
Exercise 4.2 (Yet another runtime estimate).	(3 points)	
Prove that for finite fields of size $Q=q^{2k}$ with $q\leq L_Q(\exp(O((\log Q)^{\alpha}(\log\log Q)^{1-\alpha}))$, there exists a heuristic su algorithm for computing discrete logarithms, which runs in	b-exponential time	
Exercise 4.3 (Trivial translates).	(8 points)	
In the lecture we encountered transformations $m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$	$f \in \mathbb{F}_{q^2}$ and defined	8
$m \cdot P = \frac{aP+b}{cP+d}$. Show that any m , whose entry are from \mathbb{F} trivial relation.		
Exercise 4.4 (Towards a discrete log library).	(12+140 points)	
The goal of this exercise is to implement a discrete log librar discrete logarithms in various groups G . To do so, perform	-	
(i) Decide on a language in which you will implement plain why you selected it. Hint: You will need an e cares for you finite field and polynomial arithmetic. routine needs to be present.	existing library that	2

+6

+6

For the following two tasks you have an additional week. Hand in your solutions until Saturday, 10 May 2014.

(iii) Implement the Pollard rho algorithm in $G = \mathbb{F}_p^{\times}$ for any prime p.

(iv) Implement the Chinese remaindering algorithm for computing discrete logarithms in $G = \mathbb{F}_p^{\times}$ for any prime p.

(v) Implement the Pohlig-Hellman algorithm in $G = \mathbb{F}_p^{\times}$ for any prime p.

For the following task you might use all time till the end of this summer term. Hand in your solution until Saturday, 19 July 2014.

+128 (vi) Implement the quasi-polynomial-time algorithm for solving discrete logarithms in finite fields that admit sparse medium subfield representation, presented in the lecture. Which problems do you observe? Hint: That's extremely challenging:)