Cryptanalytic world records, summer 2014 Factoring integers

Dr. Daniel Loebenberger

method	year	time
trial division	$-\infty$	$\mathcal{O}^{\sim}\left(2^{n/2}\right)$
Pollard's $p-1$ method	1974	$\mathcal{O}^{\sim}(2^{n/4})$
Pollard's $ ho$ method	1975	$\mathcal{O}^{\sim}(2^{n/4})$
Pollard's and Strassen's method	1976	$\mathcal{O}^{\sim}\left(2^{n/4}\right)$
Morrison's and Brillhart's continued fractions	1975	$\exp(\mathcal{O}^{\sim}\left(n^{1/2} ight))$
Dixon's random squares, quadratic sieve	1981	$\exp(\mathcal{O}^{\sim}(n^{1/2}))$
Lenstra's elliptic curves	1987	$\exp(\mathcal{O}^{\sim}\left(n^{1/2}\right))$
number field sieve	1990	$\exp(\mathcal{O}^{\sim}(n^{1/3}))$
Shor's quantum algorithm	1994	$\mathcal{O}\left(n^3 ight)$ q.ops.

When p is a prime, then \mathbb{Z}_p is a field; in particular, it has no zero divisors. A polynomial f of degree d has at most d roots in \mathbb{Z}_p . This is not true in \mathbb{Z}_N when N is composite. So we are looking for two values x, y with $x^2 = y^2$ in \mathbb{Z}_N but not $x \in \pm y$. This is not easy. Let N = 2183. Suppose that we have found the equations

$$453^2 = 7, 1014^2 = 3 209^2 = 21$$

Then we obtain $(453 \cdot 1014 \cdot 209)^2 = 21^2$ in \mathbb{Z}_N , or $687^2 = 21^2$ in \mathbb{Z}_N . This yields the factors $37 = \gcd(687 - 21, N)$ and $59 = \gcd(687 + 21, N)$; in fact, $N = 37 \cdot 59$ is the prime factorization of N.

Input: An integer $N \ge 3$, and $B \in \mathbb{N}_{\ge 2}$. Output: Either a proper divisor of N, or "failure".

- 1. Compute all primes p_1, p_2, \ldots, p_h up to B.
- 2. If p_i divides N for some $i \in \{1, \ldots, h\}$ then Return p_i .
- 3. $A \leftarrow \emptyset$.
- 4. Repeat 5 11 Until #A = h + 1.
- 5. Choose a uniform random number $b \stackrel{\text{\tiny{des}}}{\longrightarrow} \mathbb{Z}_N \setminus \{0\}$.

6.
$$g \leftarrow \operatorname{gcd}(b, N)$$
, If $g > 1$ then Return g .

7.
$$a \leftarrow b^2 \in \mathbb{Z}_N$$
.

8. For
$$i = 1, ..., h$$
 do 9 - 10

9.
$$\alpha_i \leftarrow 0.$$

10. While
$$p_i$$
 divides a do $a \leftarrow \frac{a}{p_i}$, $\alpha_i \leftarrow \alpha_i + 1$.

11. If
$$a = 1$$
, then $\alpha \leftarrow (\alpha_1, \dots, \alpha_h)$, $A \leftarrow A \cup \{(b, \alpha)\}$.

12. Find distinct pairs
$$(b_1, \alpha^{(1)}), \dots, (b_\ell, \alpha^{(\ell)}) \in A$$
 with $\alpha^{(1)} + \dots + \alpha^{(\ell)} = 0$ in $\mathbb{Z}_{p_1}^{h}$ for some $\ell \ge 1$.

13.
$$(\delta_1, \ldots, \delta_h) \leftarrow \frac{1}{2}(\alpha^{(1)} + \cdots + \alpha^{(\ell)}).$$

14. $x \leftarrow \prod_{1 \le i \le \ell} b_i, \quad y \leftarrow \prod_{1 \le j \le h} p_j^{\delta_j}, \quad g \leftarrow \gcd(x + y, N)$
15. If $1 < g < N$ then Return *g* Else Return "failure".

Example

We have B = 7, factor base (2, 3, 5, 7),

$$\begin{split} b_1 &= 453, b_2 = 1014, b_3 = 209, \\ \alpha^{(1)} &= (0, 0, 0, 1), \alpha^{(2)} = (0, 1, 0, 0), \alpha^{(3)} = (0, 1, 0, 1), \\ \alpha^{(1)} &+ \alpha^{(2)} + \alpha^{(3)} = (0, 2, 0, 2) = (0, 0, 0, 0) \text{ in } \mathbb{Z}_2^4, \\ \delta_1 &= \delta_3 = 0, \delta_2 = \delta_4 = 1, \\ x &= 687, y = 21, \text{ and } \gcd(687 - 21, N) = 37. \end{split}$$

In fact, there are exactly 73 7-numbers in \mathbb{Z}_N , excluding 0. Thus we expect $2180/73 \approx 31$ random choices of b in order to find one 7-number. We have $u = \ln 2182/\ln 7 \approx 3.95108$, $u^{-u} \approx 0.00439$, and $Nu^{-u} \approx 9.58$. This is a serious underestimate, which occurs for small values. However, 7-smoothness is the same as 10.9-smoothness, and with this value, we find $Nu^{-u} \approx 50.709$.

Theorem

Dixon's random squares method factors an $n\mbox{-bit}$ integer N with an expected number of

 $L_{1/2}(n)$ operations, where $L_{\alpha}(n) = \exp(\mathcal{O}\left(n^{\alpha}(\log n)^{1-\alpha})\right).$

For an *n*-bit integer N, quantum computers can calculate orders in \mathbb{Z}_N^{\times} using $O(n^3)$ operations on 4n qubits. We will now show how one can then factor N efficiently.

 B_4 : Given $N = p \cdot q$, find p.

 B_5 : Given N and $x \in \mathbb{Z}_N^{\times}$, compute the order $\operatorname{ord}(x)$.

 B'_5 : Given $\epsilon \ge 0$, N, and $x \in \mathbb{Z}_N^{\times}$, either compute an integer multiple ℓ of $k = \operatorname{ord}(x)$ with bit-size polynomial in that of N, or return "failure"; If k is odd, the latter with probability at most ϵ .

We clearly have $B'_5 \leq_p B_5$ and we will reduce B_4 to B'_5 .

ALGORITHM. Reduction \mathcal{A} from B_4 to B'_5 .

Input: An *n*-bit odd integer N, not a proper power of an integer. Output: A proper factor of N, or "failure".

- 1. Choose $x \xleftarrow{\otimes} \{1, \dots, N-1\}$. Compute $g \leftarrow \gcd(x, N)$.
- 2. If $g \neq 1$ then return g.
- 3. $y \leftarrow x^{2^n}$.
- 4. Call an oracle for B_5' to either receive a multiple ℓ of the order of y in \mathbb{Z}_N^{\times} or "failure". In the latter case, return "failure".
- 5. Write $\ell = 2^e m$, with nonnegative integers e and m, where m is odd.
- 6. $z \leftarrow x^m$ in \mathbb{Z}_N .
- 7. If z = 1 then return "failure".
- 8. For i from 1 to n do 9 through 12.
- 9. If z = -1 then return "failure".
- 10. $u \leftarrow z^2$ in \mathbb{Z}_N .
- 11. If u = 1 then compute $r \leftarrow \text{gcd}(z 1, N)$ and return r.
- 12. $z \leftarrow u$.
- 13. Return "failure".

Example

For input N = 21, the 20 choices of x in step 1 of Algorithm lead to the following values, where z is the value in step 10.

$gcd(x, N) \neq 1$	even order					odd order				
	x	y	ℓ	k	z	r	x	z	k	
							1	1	1	
3, 6, 7, 9	2	4	3	6	8	7	4	1	3	
12, 14, 15, 18	5	4	3	6	20	f	16	1	3	
	8	1	1	2	8	$\overline{7}$				
	10	16	3	6	13	3				
	11	16	3	6	8	$\overline{7}$				
	13	1	1	2	13	3				
	17	16	3	6	20	f				
	19	4	3	6	13	3				
	20	1	1	2	20	f				

The values x and y are from steps 1 and 3, respectively, of Algorithm, ℓ is the output of the order oracle, assumed to be $\operatorname{ord}(y)$, so that $\ell = m$ in step 4, $k = \operatorname{ord}(x)$, z is from step 5, and r is either the factor of 21 from step 10 or f = "failure". Thus we obtain a proper factor of 21 for 8 + 6 = 14 values of x.

Theorem

If an output is returned in steps 2 or 11, it is correct. The probability of failure is at most $1/2 + \epsilon$, and for an *n*-bit input N the reduction uses $O(n^3)$ operations in \mathbb{Z}_N plus one call to B'_5 with an argument of odd order.