Cryptanalytic world records, summer 2014

Factoring integers

Dr. Daniel Loebenberger

method	year	time
trial division	$-\infty$	$\mathcal{O}^{\sim}\left(2^{n / 2}\right)$
Pollard's $p-1$ method	1974	$\mathcal{O}^{\sim}\left(2^{n / 4}\right)$
Pollard's ρ method	1975	$\mathcal{O}^{\sim}\left(2^{n / 4}\right)$
Pollard's and Strassen's method	1976	$\mathcal{O}^{\sim}\left(2^{n / 4}\right)$
Morrison's and Brillhart's continued fractions	1975	$\exp \left(\mathcal{O}^{\sim}\left(n^{1 / 2}\right)\right)$
Dixon's random squares, quadratic sieve	1981	$\exp \left(\mathcal{O}^{\sim}\left(n^{1 / 2}\right)\right)$
Lenstra's elliptic curves	1987	$\exp \left(\mathcal{O}^{\sim}\left(n^{1 / 2}\right)\right)$
number field sieve	1990	$\exp \left(\mathcal{O}^{\sim}\left(n^{1 / 3}\right)\right)$
Shor's quantum algorithm	1994	$\mathcal{O}\left(n^{3}\right) \mathrm{q}$. .ops.

When p is a prime, then \mathbb{Z}_{p} is a field; in particular, it has no zero divisors. A polynomial f of degree d has at most d roots in \mathbb{Z}_{p}. This is not true in \mathbb{Z}_{N} when N is composite.
So we are looking for two values x, y with $x^{2}=y^{2}$ in \mathbb{Z}_{N} but not $x \in \pm y$. This is not easy.

Let $N=2183$. Suppose that we have found the equations

$$
\begin{aligned}
453^{2} & =7 \\
1014^{2} & =3 \\
209^{2} & =21
\end{aligned}
$$

Then we obtain $(453 \cdot 1014 \cdot 209)^{2}=21^{2}$ in \mathbb{Z}_{N}, or $687^{2}=21^{2}$ in \mathbb{Z}_{N}. This yields the factors $37=\operatorname{gcd}(687-21, N)$ and $59=\operatorname{gcd}(687+21, N)$; in fact, $N=37 \cdot 59$ is the prime factorization of N.

Algorithm. Dixon's random squares method.
Input: An integer $N \geq 3$, and $B \in \mathbb{N}_{\geq 2}$.
Output: Either a proper divisor of N, or "failure".

1. Compute all primes $p_{1}, p_{2}, \ldots, p_{h}$ up to B.
2. If p_{i} divides N for some $i \in\{1, \ldots, h\}$ then Return p_{i}.
3. $A \leftarrow \emptyset$.
4. Repeat 5-11 Until $\# A=h+1$.
5. Choose a uniform random number $b \longleftarrow \mathbb{Z}_{N} \backslash\{0\}$.
6. $\quad g \leftarrow \operatorname{gcd}(b, N)$, If $g>1$ then Return g.
7. $a \leftarrow b^{2} \in \mathbb{Z}_{N}$.
8. For $i=1, \ldots, h$ do $9-10$
9. $\quad \alpha_{i} \leftarrow 0$.
10. While p_{i} divides a do $a \leftarrow \frac{a}{p_{i}}, \alpha_{i} \leftarrow \alpha_{i}+1$.
11. If $a=1$, then $\alpha \leftarrow\left(\alpha_{1}, \ldots, \alpha_{h}\right), A \leftarrow A \cup\{(b, \alpha)\}$.
12. Find distinct pairs $\left(b_{1}, \alpha^{(1)}\right), \ldots,\left(b_{\ell}, \alpha^{(\ell)}\right) \in A$ with $\alpha^{(1)}+\cdots+\alpha^{(\ell)}=0$ in \mathbb{Z}_{2}^{h}, for some $\ell \geq 1$.
13. $\left(\delta_{1}, \ldots, \delta_{h}\right) \leftarrow \frac{1}{2}\left(\alpha^{(1)}+\cdots+\alpha^{(\ell)}\right)$.
14. $x \leftarrow \prod_{1 \leq i \leq \ell} b_{i}, \quad y \leftarrow \prod_{1 \leq j \leq h} p_{j}^{\delta_{j}}, \quad g \leftarrow \operatorname{gcd}(x+y, N)$.
15. If $1<g<N$ then Return g Else Return "failure".

Example

We have $B=7$, factor base $(2,3,5,7)$,

$$
\begin{aligned}
& b_{1}=453, b_{2}=1014, b_{3}=209 \\
& \alpha^{(1)}=(0,0,0,1), \alpha^{(2)}=(0,1,0,0), \alpha^{(3)}=(0,1,0,1) \\
& \alpha^{(1)}+\alpha^{(2)}+\alpha^{(3)}=(0,2,0,2)=(0,0,0,0) \text { in } \mathbb{Z}_{2}^{4} \\
& \delta_{1}=\delta_{3}=0, \delta_{2}=\delta_{4}=1 \\
& x=687, y=21, \text { and } \operatorname{gcd}(687-21, N)=37
\end{aligned}
$$

In fact, there are exactly 737 -numbers in \mathbb{Z}_{N}, excluding 0 . Thus we expect $2180 / 73 \approx 31$ random choices of b in order to find one 7 -number. We have $u=\ln 2182 / \ln 7 \approx 3.95108, u^{-u} \approx 0.00439$, and $N u^{-u} \approx 9.58$. This is a serious underestimate, which occurs for small values. However, 7 -smoothness is the same as 10.9 -smoothness, and with this value, we find $N u^{-u} \approx 50.709$.

Theorem
Dixon's random squares method factors an n-bit integer N with an expected number of

$$
L_{1 / 2}(n)
$$

operations, where $L_{\alpha}(n)=\exp \left(\mathcal{O}\left(n^{\alpha}(\log n)^{1-\alpha}\right)\right)$.

For an n-bit integer N, quantum computers can calculate orders in \mathbb{Z}_{N}^{\times}using $O\left(n^{3}\right)$ operations on $4 n$ qubits. We will now show how one can then factor N efficiently.
B_{4} : Given $N=p \cdot q$, find p.
B_{5} : Given N and $x \in \mathbb{Z}_{N}^{\times}$, compute the order $\operatorname{ord}(x)$.
B_{5}^{\prime} : Given $\epsilon \geq 0, N$, and $x \in \mathbb{Z}_{N}^{\times}$, either compute an integer multiple ℓ of $k=\operatorname{ord}(x)$ with bit-size polynomial in that of N, or return "failure"; If k is odd, the latter with probability at most ϵ.

We clearly have $B_{5}^{\prime} \leq_{p} B_{5}$ and we will reduce B_{4} to B_{5}^{\prime}.

Algorithm. Reduction \mathcal{A} from B_{4} to B_{5}^{\prime}.
Input: An n-bit odd integer N, not a proper power of an integer.
Output: A proper factor of N, or "failure".

1. Choose $x \longleftarrow\{1, \ldots, N-1\}$. Compute $g \leftarrow \operatorname{gcd}(x, N)$.
2. If $g \neq 1$ then return g.
3. $y \leftarrow x^{2^{n}}$.
4. Call an oracle for B_{5}^{\prime} to either receive a multiple ℓ of the order of y in \mathbb{Z}_{N}^{\times}or "failure". In the latter case, return "failure".
5. Write $\ell=2^{e} m$, with nonnegative integers e and m, where m is odd.
6. $z \leftarrow x^{m}$ in \mathbb{Z}_{N}.
7. If $z=1$ then return "failure".
8. For i from 1 to n do 9 through 12 .
9. If $z=-1$ then return "failure".
10. $u \leftarrow z^{2}$ in \mathbb{Z}_{N}.
11. If $u=1$ then compute $r \leftarrow \operatorname{gcd}(z-1, N)$ and return r.
12. $z \leftarrow u$.
13. Return "failure".

Example

For input $N=21$, the 20 choices of x in step 1 of Algorithm lead to the following values, where z is the value in step 10 .

$\operatorname{gcd}(x, N) \neq 1$	even order						odd order		
	x	y	ℓ	k	z	r	x	z	

The values x and y are from steps 1 and 3 , respectively, of Algorithm, ℓ is the output of the order oracle, assumed to be ord (y), so that $\ell=m$ in step $4, k=\operatorname{ord}(x), z$ is from step 5 , and r is either the factor of 21 from step 10 or $f=$ "failure". Thus we obtain a proper factor of 21 for $8+6=14$ values of x.

Theorem
If an output is returned in steps 2 or 11, it is correct. The probability of failure is at most $1 / 2+\epsilon$, and for an n-bit input N the reduction uses $O\left(n^{3}\right)$ operations in \mathbb{Z}_{N} plus one call to B_{5}^{\prime} with an argument of odd order.

