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method year time

trial division −∞ O∼
(

2n/2
)

Pollard’s p− 1 method 1974 O∼
(

2n/4
)

Pollard’s ρ method 1975 O∼
(

2n/4
)

Pollard’s and Strassen’s method 1976 O∼
(

2n/4
)

Morrison’s and Brillhart’s continued fractions 1975 exp(O∼
(

n1/2
)

)

Dixon’s random squares, quadratic sieve 1981 exp(O∼
(

n1/2
)

)

Lenstra’s elliptic curves 1987 exp(O∼
(

n1/2
)

)

number field sieve 1990 exp(O∼
(

n1/3
)

)
Shor’s quantum algorithm 1994 O

(

n3
)

q.ops.
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When p is a prime, then Zp is a field; in particular, it has no zero

divisors. A polynomial f of degree d has at most d roots in Zp.

This is not true in ZN when N is composite.

So we are looking for two values x, y with x2 = y2 in ZN but not

x ∈ ±y. This is not easy.
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Let N = 2183. Suppose that we have found the equations

4532 = 7,

10142 = 3

2092 = 21.

Then we obtain (453 · 1014 · 209)2 = 212 in ZN , or 6872 = 212 in

ZN . This yields the factors 37 = gcd(687 − 21, N) and
59 = gcd(687 + 21, N); in fact, N = 37 · 59 is the prime

factorization of N .
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Algorithm. Dixon’s random squares method.

Input: An integer N ≥ 3, and B ∈ N≥2.

Output: Either a proper divisor of N , or “failure”.

1. Compute all primes p1, p2, . . . , ph up to B.

2. If pi divides N for some i ∈ {1, . . . , h} then Return pi.
3. A← ∅.
4. Repeat 5 - 11 Until #A = h+ 1.
5. Choose a uniform random number b←−− ZN \ {0}.
6. g ← gcd(b,N), If g > 1 then Return g .

7. a← b2 ∈ ZN .

8. For i = 1, . . . , h do 9 - 10

9. αi ← 0.
10. While pi divides a do a← a

pi
, αi ← αi + 1.

11. If a = 1, then α← (α1, . . . , αh), A← A ∪ {(b, α)}.
12. Find distinct pairs (b1, α

(1)), . . . , (bℓ, α
(ℓ)) ∈ A with

α(1) + · · ·+ α(ℓ) = 0 in Z
h
2 , for some ℓ ≥ 1.

13. (δ1, . . . , δh)←
1
2 (α

(1) + · · ·+ α(ℓ)).

14. x←
∏

1≤i≤ℓ bi, y ←
∏

1≤j≤h p
δj
j , g ← gcd(x+ y,N).

15. If 1 < g < N then Return g Else Return “failure” .
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Example

We have B = 7, factor base (2, 3, 5, 7),

b1 = 453, b2 = 1014, b3 = 209,

α(1) = (0, 0, 0, 1), α(2) = (0, 1, 0, 0), α(3) = (0, 1, 0, 1),

α(1) + α(2) + α(3) = (0, 2, 0, 2) = (0, 0, 0, 0) in Z
4
2,

δ1 = δ3 = 0, δ2 = δ4 = 1,

x = 687, y = 21, and gcd(687 − 21, N) = 37.

In fact, there are exactly 73 7-numbers in ZN , excluding 0. Thus
we expect 2180/73 ≈ 31 random choices of b in order to find one

7-number. We have u = ln 2182/ ln 7 ≈ 3.95108, u−u ≈ 0.00439,
and Nu−u ≈ 9.58. This is a serious underestimate, which occurs

for small values. However, 7-smoothness is the same as

10.9-smoothness, and with this value, we find Nu−u ≈ 50.709.
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Theorem

Dixon’s random squares method factors an n-bit integer N with an

expected number of

L1/2(n)

operations, where Lα(n) = exp(O
(

nα(logn)1−α)
)

.
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For an n-bit integer N , quantum computers can calculate orders in

Z
×

N using O(n3) operations on 4n qubits. We will now show how

one can then factor N efficiently.
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B4 : Given N = p · q, find p.

B5 : Given N and x ∈ Z
×

N , compute the order ord(x).

B′

5 : Given ǫ ≥ 0, N , and x ∈ Z
×

N , either compute an inte-

ger multiple ℓ of k = ord(x) with bit-size polynomial in

that of N , or return “failure”; If k is odd, the latter with

probability at most ǫ.

We clearly have B′

5 ≤p B5 and we will reduce B4 to B′

5.

3/12



Algorithm. Reduction A from B4 to B′
5.

Input: An n-bit odd integer N , not a proper power of an integer.

Output: A proper factor of N , or “failure”.

1. Choose x←−− {1, . . . , N − 1}. Compute g ← gcd(x,N).

2. If g 6= 1 then return g.

3. y ← x2n .

4. Call an oracle for B′
5 to either receive a multiple ℓ of the order of y

in Z
×
N or “failure”. In the latter case, return “failure”.

5. Write ℓ = 2em, with nonnegative integers e and m, where m is odd.

6. z ← xm in ZN .

7. If z = 1 then return “failure”.

8. For i from 1 to n do 9 through 12.

9. If z = −1 then return “failure”.

10. u← z2 in ZN .

11. If u = 1 then compute r ← gcd(z − 1, N) and return r.

12. z ← u.
13. Return “failure”.
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Example

For input N = 21, the 20 choices of x in step 1 of Algorithm lead to the

following values, where z is the value in step 10.

gcd(x,N) 6= 1 even order odd order

x y ℓ k z r x z k
1 1 1

3, 6, 7, 9 2 4 3 6 8 7 4 1 3
12, 14, 15, 18 5 4 3 6 20 f 16 1 3

8 1 1 2 8 7
10 16 3 6 13 3
11 16 3 6 8 7
13 1 1 2 13 3
17 16 3 6 20 f
19 4 3 6 13 3
20 1 1 2 20 f

The values x and y are from steps 1 and 3, respectively, of Algorithm, ℓ
is the output of the order oracle, assumed to be ord(y), so that ℓ = m in

step 4, k = ord(x), z is from step 5, and r is either the factor of 21 from

step 10 or f = “failure”. Thus we obtain a proper factor of 21 for

8 + 6 = 14 values of x. 1/12



Theorem

If an output is returned in steps 2 or 11, it is correct. The

probability of failure is at most 1/2 + ǫ, and for an n-bit input N
the reduction uses O(n3) operations in ZN plus one call to B′

5

with an argument of odd order.
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