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We are heading towards the fastest known algorithm for factoring
integers N, the general number field sieve. As the name suggests,
it employs the algebraic concept of a number field (or a number
ring).

For Dixon's random squares, we constructed (using linear algebra)
a square on the right-hand side of a congruence u? = v2. The
left-hand side was by construction a square already. In the number
field sieve, we use the linear algebra on both sides of the desired
congruence!
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Assume we have an element 6 of a number ring and a
homomorphism ¢ mapping elements from that ring to Zy.
Furthermore, suppose we have a set of pairs 6;, ¢(0;) for

1 < i < k, such the the product of the 6; is a square 2 in the
number ring and also the product of the ¢(6;) is congruent to an
integer square modulo N. Then if ¢(7) = u € Zn, we have

u? = ()2 = d(v?) = ¢(01 -+ 01) = ¢(61) - - $(0x) = v* in Zy

This is (hopefully) a non-trivial congruence of squares!

15/18



To construct the number ring, consider an irreducible polynomial

d—1

f(@) =2+ g1zt + -+ ¢ € Zz]

with some (complex) root « and consider the ring

Zla) = Z[x]/(f(z)). Additionally, we require the there is some
integer m, such that f(m)=0in Zy

The homomorphism ¢: Z[a] — Zy is defined by ¢(a) = m.
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We are heading to find v € Z[a] and v € Z, which will (hopefully)
give us a non-trivial factorization of our integer V.

For the following we assume that the elements 6 in the ring Z[a]
are all of the very special form a — ba, with coprime a,b € Z.
Thus, we try to find a set S of such integer pairs (a,b), such that

H (a — ba) = 42 for some v € Z[a]
(a,b)eS

H (a — bm) = v* for some v € Z
(a,b)es

How to find such a set S? Sieve the polynomial G(a,b) = a — bm
for smooth values and build from that using linear algebra a square
on the rational side. The problem is, that we have to
simultaneously ensure that the corresponding product of the

a — ba has to be a square in Z[a] as well.
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Definition (Norm of an algebraic element)

Let aq,...,aq € C be the roots of the degree d polynomial f with
a = ay. The norm N(f3) € Q of an element

B=s0+s1a+ -+ s5_10%7"

in the algebraic number field Q[«] is the product of all conjugates
of 3, i.e. the product of all so + s1a; +--- + sd_la‘;_l € Q[a].
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If B =~2 for some v € Z[a], then N(B8) = N(vy)? € Z. So, a
necessary condition for the product of the a — ba to be a square is
that the product of the integers N(a — ba) is a square.

If F(z,y) = 2%+ cg_129 1y + - - coy? is the homogeneous form
of f, then N(a — ba) = F(a,b). Thus, we need to sieve for
smooth values of F'(a,b) and G(a,b) simultaneously and perform
then linear algebra to find our congruence of squares!
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The problem is that this does not work, the above stated condition
is far from sufficient.
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Example

Consider f(x) = 22 4+ 1 with f(i) = 0. Then N(a + bi) = a® + b2

If a® + b% is a square then a + bi needs not to be a square in Z[i].
If a is a non-square integer, so it is in Z[i], but N(a) = a? is a
square. Also, one can show that 5i = (2 + ¢)(1 + 2¢) is not a
square in Z[i], but N(5i) = 25 is a square in Z.
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For each prime p, write
R(p) ={re{0,....p—1}| f(r)=01inZ,}.
If @ and b are coprime then
F(a,b) =0 € Z, <= a = br in Z, for some r € R(p)

Thus, we store for each entry of our exponent vector corresponding
to the factorization of F'(a,b) also the value r € R(p).
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Example

Consider the polynomial f(z) = 22 4+ 1 and take B = 5. Then the
exponent vectors for B-smooth elements of Z[i] consist of three
entries, corresponding to the pairs (2,1), (5,2) and (5,3). We get

F(3,1) = 10 with exponent vector (1,0,1)

F(2,1) = 5 with exponent vector (0, 1,0)

F(1,1) = 2 with exponent vector (1,0,0)
F(2,—1) = 5 with exponent vector (0,0, 1)

Then F(3,1)F(2,1)F(1,1) = 100, but the corresponding
exponent vector (0,1,1) shows, that (3+4)(2+¢)(1 +1) is not a
square in Z[i]. On the other hand F'(3,1)F(1,1)F(2,—1) = 100
has exponent vector (0,0,0) and

(B4+14)(1+i)(2—1i) =8+6i = ((1+1i)(2—1))? is a square in Z[i].
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The problem is that this still does not work, since some
non-squares on the algebraic side will correspond to zero-vectors.
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We introduce yet another algebraic concept: Denote by I the ring
of algebraic integers in the algebraic number field Q[a], i.e. the set
of elements that are the root of some monic polynomial in Z|x].
This is a ring, the ring of algebraic integers in the number field.
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Lemma

If S is a set of coprime integer pairs (a,b) such that a — ba is
B-smooth, and if [, ;e s(a — ba) is a square of an algebraic
integer of the number field Q[c]. Then

Z v(a — ba)) = 0 over Fs.
(a,b)es

Here,

0 ,if a # brin Zy,

—ba)y,, =
vla = bal, {e(p) Jif a = brin Z, and p°®) || N(a — ba).
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Given the last lemma, we still have to overcome various
obstructions. However, most of the principles needed here are
beyond the scope of this course.
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The runtime estimate crucially depends on the following:

Theorem (Pomerance 1996)

If m1,mo, ... is a sequence of independent, uniformly selected
integers in {1,..., X}. Let N be the smallest integer, such that
there is a nonempty subsequence of m1,..., my has product being

a square. Then the expected value for N is
exp((V2 4 0(1))(In X)¥2(InIn X)1/2),
even if we insist that each m; is B-smooth, where

B =exp(272(In X)2(InIn X)1/2).
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Theorem

The general number field sieve on an integer IV of bit-size n has
an heuristic asymptotic complexity of L;/3(n). More precisely, its
complexity can be estimated as

exp(((64/9)1/3 + 0(1))n1/3(log n)2/3).
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We are pleased to announce the factorization of RSA768, the
following 768-bit, 232-digit number from RSA’s challenge list:

12301866845301177551304949583849627207728535695953347921973224521517264005
07263657518745202199786469389956474942774063845925192557326303453731548268
50791702612214291346167042921431160222124047927473779408066535141959745985
6902143413.

The factorization, found using the Number Field Sieve (NFS), is:

3347807169895689878604416984821269081770479498371376856891
2431388982883793878002287614711652531743087737814467999489
*
3674604366679959042824463379962795263227915816434308764267
6032283815739666511279233373417143396810270092798736308917

On December 12, 2009, we found the factors at the first solution.
A few minutes later four of the other seven jobs produced the
factorization as well.
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