Cryptanalytic world records, summer 2014
 Daniel Loebenberger, Konstantin Ziegler

6. Exercise sheet
 Hand in solutions until Saturday, 17 May 2014, 23:59:59

Exercise 6.1 (Dixon's random squares).
Find a factor of $N=1517$ using Dixon's random squares method.
(i) Choose $B=7$ and complete the following table.

i	b	b^{2} rem N	Factorization	α	$\alpha \bmod 2$
0	141	160	$2^{5} \cdot 5$	$(5,0,1,0)$	$(1,0,1,0)$
1	243	1403	$23 \cdot 61$	-	-
2	1071	\ldots	\ldots	\ldots	\ldots
3	529	\ldots	\ldots	\ldots	\ldots
4	1174	\ldots	\ldots	\ldots	\ldots

(ii) Find a linear combination of the α 's that is the zero vector in \mathbb{Z}_{2}.
(iii) Compute the corresponding x and y. Can you compute the factorization of N ?

Exercise 6.2 (A probability estimate).
Let N be odd with $r \geq 2$ distinct prime factors and $x \longleftarrow \mathbb{Z}_{N}^{\times}$of order k.
(i) Show that prob (k even) $\geq 1-2^{-r} \geq 3 / 4$. Hint: Chinese remainder 3 theorem.
(ii) Prove that under the condition that k is even, we have $x^{k / 2} \in \sqrt{1} \backslash \pm 1$ with probability $1-1 /\left(2^{r}-1\right) \geq 2 / 3$.

Exercise 6.3 (Finding a suitable polynomial for the GNFS).
(3+4 points)
In the lecture we claimed that when we try to find a monic polynomial $f \in \mathbb{Z}[x]$ of suitable degree d (depending on N) that then the m-ary expansion of N for $m=\left\lfloor n^{1 / d}\right\rfloor$ will lead us to such a polynomial. You task is to prove this.
(i) Show that if $N \geq 64$ and $m=\left\lfloor N^{1 / 3}\right\rfloor$, then we have $N<2 m^{3}$.
(ii) More generally, show that if $N>1.5(d / \ln 2)^{d}$ and $m=\left\lfloor N^{1 / d}\right\rfloor$, then we have $N<2 m^{d}$.
(iii) Conclude that the construction from the lecture indeed produces a monic polynomial $f \in \mathbb{Z}[x]$.

Exercise 6.4 (On the homomorphism used in the GNFS).
Let $f \in \mathbb{Z}[x]$ be any irreducible, monic polynomial and let $\alpha \in \mathbb{C}$ be any root of it. Furthermore assume we have an integer $m \in \mathbb{Z}$ such that $f(m)=0$ in \mathbb{Z}_{N}. Show that the map $\varphi: \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_{N}$ that maps α to the residue class of m in \mathbb{Z}_{N} is a homomorphism of rings.

