Cryptanalytic world records, summer 2014 Daniel Loebenberger, Konstantin Ziegler

6. Exercise sheet Hand in solutions until Saturday, 17 May 2014, 23:59:59

Exercise 6.1 (Dixon's random squares). (6 points)

Find a factor of N = 1517 using Dixon's random squares method.

(i) Choose B = 7 and complete the following table.

i	b	$b^2 \operatorname{rem} N$	Factorization	α	$\alpha \! \mod 2$
0	141	160	$2^5 \cdot 5$	(5, 0, 1, 0)	(1, 0, 1, 0)
1	243	1403	$23 \cdot 61$	-	-
2	1071				
3	529				
4	1174				

- (ii) Find a linear combination of the α 's that is the zero vector in \mathbb{Z}_2 .
- (iii) Compute the corresponding x and y. Can you compute the factorization $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ of N?

Exercise 6.2 (A probability estimate).

Let N be odd with $r \ge 2$ distinct prime factors and $x \stackrel{\text{\tiny{des}}}{\longleftarrow} \mathbb{Z}_N^{\times}$ of order k.

- (i) Show that prob $(k \text{ even}) \ge 1 2^{-r} \ge 3/4$. Hint: Chinese remainder 3 theorem.
- (ii) Prove that under the condition that k is even, we have $x^{k/2} \in \sqrt{1} \setminus \pm 1$ 3 with probability $1 1/(2^r 1) \ge 2/3$.

(6 points)

3

2

1

4

Exercise 6.3 (Finding a suitable polynomial for the GNFS). (3+4 points)

In the lecture we claimed that when we try to find a monic polynomial $f \in \mathbb{Z}[x]$ of suitable degree d (depending on N) that then the m-ary expansion of N for $m = \lfloor n^{1/d} \rfloor$ will lead us to such a polynomial. You task is to prove this.

- (i) Show that if $N \ge 64$ and $m = \lfloor N^{1/3} \rfloor$, then we have $N < 2m^3$.
- (ii) More generally, show that if $N > 1.5(d/\ln 2)^d$ and $m = \lfloor N^{1/d} \rfloor$, then we have $N < 2m^d$.

2

(iii) Conclude that the construction from the lecture indeed produces a monic polynomial $f \in \mathbb{Z}[x]$.

Exercise 6.4 (On the homomorphism used in the GNFS). (4 points)

Let $f \in \mathbb{Z}[x]$ be any irreducible, monic polynomial and let $\alpha \in \mathbb{C}$ be any root of it. Furthermore assume we have an integer $m \in \mathbb{Z}$ such that f(m) = 0 in \mathbb{Z}_N . Show that the map $\varphi \colon \mathbb{Z}[\alpha] \to \mathbb{Z}_N$ that maps α to the residue class of m in \mathbb{Z}_N is a homomorphism of rings.