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Pollard’s p — 1 method
Pollard’s p method
Pollard’s and Strassen’s method
Morrison's and Brillhart’s continued fractions
Dixon's random squares, quadratic sieve
Lenstra’s elliptic curves
number field sieve
Shor’s quantum algorithm
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Pollard's p — 1 method

Assume the number N = p - q to be factored has the property that
p — 1 is B-smooth. Furthermore, assume you found e € Z, such
that p — 1 divides e. If we take a € Z]f,, then a® =1 ¢ Z;. If
additionally a® £ 1 € Z, we find by computing

gcd(a® — 1, N) = p a proper factor of N.
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The method crucially depends on the nature of the number N to
be factored. Now, the elliptic curve method modifies this
approach: Instead of working in Zp, we actually work in the group
of points of an elliptic curve!
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A family of elliptic curves with the point at infinity:

v2 = x3-3x+b
— b=5
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Definition
Let I’ be a field of characteristic different from 2 and 3, and
a,b € F with 4a® +27b% # 0. Then

E={(u,v) € F2:v* =u* 4 au + b} U {0} C F2U {0}

is an elliptic curve over F'. Here O denotes the “point at infinity”

on E. The Weierstrass equation for E is
y? — (2% 4+ ax +b) =0,

E consists of its root (u,v), and a and b are the Weierstrass
coefficients of E.
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Adding two points on the elliptic curve 3% = z
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Definition
For a,b € Zy with gcd(N,6) = 1 and ged(4a® 4 2762, N) = 1, we
call the set

E = {(u,v) € Z% : v*> = u® + au + b} U{O}

an elliptic pseudocurve.
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ALGORITHM. Elliptic curve method.
Input: An integer N > 2 with gcd(N,6) =1 and N not a perfect

power.

Output: A proper factor of V.

I
N = o

LN R wbH

Choose the stage-one limit By, e.g. By = 10000.
Repeat 3-5

Choose randomly x,y,a € Zx.

Set b = (y? — 2% — ax) modulo N.

Compute g = gcd(4a® + 2702, N).

While g = N.

If g > 1 return g.

Set P = (x,y).

Try to compute Q = kP with k = Hp‘ﬁSBl P

If the computation failed then
Return a proper factor of n or start from the beginning.

. Increment B and start from the beginning.
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Theorem

Let E be an elliptic curve over the finite field I, of characteristic
greater than three. Then #F < 2¢q + 1.
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The number w(s) of Weierstrass parameters of elliptic curves over

Fo5013 with s points:
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The number w(s) of Weierstrass parameters of elliptic curves over
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Hasse's bound

If E is an elliptic curve over the finite field I, then

|#E — (¢+1)] <2/4q.
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Theorem (Lenstra, 1987)

There is a positive constant ¢ such that for every prime p > 3 and
any set S with #S > 3 of integers from the Hasse interval

(p+1—-2p,p+1+2,p), we have

Ni(S) > c-#8-p*?/Inp and No(S) > ¢ #S - p°/%/Inp.

8/21



Theorem

On input NV, gcd(N,6) = 1 not a perfect power with smallest
prime factor p, the elliptic curve method runs in an heuristic
expected time of

exp((vV2+o(1))y/InpIninp),
when By = exp((v/2/2 + o(1))y/InpIninp).
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For ECM there is a a natural second stage. Assume #E, ;(IF,) is
not Bi-smooth. Then the stage one ECM would always fail to find
a factor. But it might be that the group order has just a single
prime factor exceeding By, i.e.

#Ea,b(Fp) =q- H p?i

pi<By

for p prime, ¢ > By. Then, simply going through the subsequent
primes beyond B is called stage 2 of the ECM.
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Further improvements:
> Use a special parametrization of the curve, i.e. Montgomery
curves.
» Choose special curves whose group order is known to be
divisible by 12 or 16.
> Use better arithmetic for large integers.
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Theorem (Generalized Montgomery identities)

Given an elliptic curve by gy? = 2% + c2? + ax + b and two finite
points P = (z1,y1), @ = (x2,y2) then if z1 # xo we have

(r129 — a)? — 4b(x1 + x2 + ¢)

TiLXx_ —
" (z1 — x2)?

9

where P+ Q = (z4+,y+) and P — Q = (z_,y_). If x1 = x2 then

(r1 —a)? — 4b(2x1 + ¢)
4(x3 + cx? + axy + b)

Ty =
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Definition (Differential addition)

Given finite points P} = [X1 : Y7 : Z3], Po = [X2 : Yo : Z5] and

P, — P, =[X_,Y_,Z_] on the homogeneous Montgomery curve
with X_ 2 0 then for the point P, + P, = [ X4 : Y} : Z,] we have
X, =Z_((X1Xo — aZ1Z2)? — 4b(X 1 Zy + XoZ1 + cZ1Z2) 21 Zs)
Zy =X _(X1Zy — XoZ,)?

Definition (Differential doubling)

Given P} = [X; : Y] : Z1] on the homogeneous Montgomery curve
then then for the point 2P = [X; : Y, : Z,] we have

X, = (X1 —aZ})? —4b(2X, + ¢Z)) 73
Zy =47\ (X1 + X371 + aX\ Z? + bZ)
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Montgomery curves are given by a cubic gy®> = 3 + cx? + ax + b.

Such curves allow particularly nice addition chains:

ALGORITHM.

Input: A point P = [X : Z], a positive integer k with B bits.

Output: The [X : Z] coordinates of kP.

1.

oo wnN

If n =0 then return O.

If n =1 then return [X : Z].

If n = 2 then return double([X : Z]).
[U:V]=[X:2Z],[T: W] = double([X : Z])
For j from B — 2 downto 0 do [6-7]

if kj =1 then

[U:V]=add([T: W, [U:V],[X:Z])
[T : W] = double([T" : W)

. else

[U:V]=add([U:V],[T:W],[X :Z])
[T : W] = double([U : V)
if ko =1 return add([U : V],[T: W],[X : Z])

. return double([U : V)
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Theorem
Define an elliptic curve by E, : y? = 23 4+ C(0)x? + x with
3
C(U)ZM—Q, u=02-5 v=40 and o #0,1,5.

4udv

Then #FE, is divisible by 12.

Furthermore, either on E (or a twist of it), we have a point with
x-coordinate u?v 2 on it.
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Thank you!
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