Cryptanalytic world records, summer 2014 The elliptic curve method

Dr. Daniel Loebenberger

method	year	time
trial division	$-\infty$	$\mathcal{O}^{\sim}\left(2^{n/2}\right)$
Pollard's $p-1$ method	1974	$\mathcal{O}^{\sim}(2^{n/4})$
Pollard's $ ho$ method	1975	$\mathcal{O}^{\sim}(2^{n/4})$
Pollard's and Strassen's method	1976	$\mathcal{O}^{\sim}\left(2^{n/4}\right)$
Morrison's and Brillhart's continued fractions	1975	$\exp(\mathcal{O}^{\sim}(n^{1/2}))$
Dixon's random squares, quadratic sieve	1981	$\exp(\mathcal{O}^{\sim}(n^{1/2}))$
Lenstra's elliptic curves	1987	$\exp(\mathcal{O}^{\sim}\left(n^{1/2}\right))$
number field sieve	1990	$\exp(\mathcal{O}^{\sim}(n^{1/3}))$
Shor's quantum algorithm	1994	$\mathcal{O}\left(n^3 ight)$ q.ops.

Pollard's p-1 method

Assume the number $N = p \cdot q$ to be factored has the property that p-1 is B-smooth. Furthermore, assume you found $e \in \mathbb{Z}$, such that p-1 divides e. If we take $a \in \mathbb{Z}_N^{\times}$, then $a^e = 1 \in \mathbb{Z}_p^{\times}$. If additionally $a^e \neq 1 \in \mathbb{Z}_q^{\times}$, we find by computing $\gcd(a^e - 1, N) = p$ a proper factor of N.

The method crucially depends on the nature of the number N to be factored. Now, the *elliptic curve method* modifies this approach: Instead of working in \mathbb{Z}_N , we actually work in the group of points of an elliptic curve!

A family of elliptic curves with the point at infinity:

Definition

Let F be a field of characteristic different from 2 and 3, and $a,b\in F$ with $4a^3+27b^2\neq 0.$ Then

$$E = \{(u, v) \in F^2 : v^2 = u^3 + au + b\} \dot{\cup} \{\mathcal{O}\} \subseteq F^2 \dot{\cup} \{\mathcal{O}\}$$

is an *elliptic curve* over F. Here \mathcal{O} denotes the "point at infinity" on E. The Weierstrass equation for E is

$$y^2 - (x^3 + ax + b) = 0,$$

E consists of its root (u, v), and a and b are the Weierstrass coefficients of E.

Adding two points on the elliptic curve $y^2 = x^3 - x$:

Definition

For $a,b\in \mathbb{Z}_N$ with $\gcd(N,6)=1$ and $\gcd(4a^3+27b^2,N)=1,$ we call the set

$$E = \{(u, v) \in \mathbb{Z}_N^2 : v^2 = u^3 + au + b\} \dot{\cup} \{\mathcal{O}\}\$$

an elliptic pseudocurve.

ALGORITHM. Elliptic curve method.

Input: An integer $N \ge 2$ with gcd(N, 6) = 1 and N not a perfect power.

Output: A proper factor of N.

- 1. Choose the stage-one limit B_1 , e.g. $B_1 = 10000$.
- 2. Repeat 3-5
- 3. Choose randomly $x, y, a \in \mathbb{Z}_N$.

4. Set
$$b = (y^2 - x^3 - ax) \mod N$$
.

- 5. Compute $g = \gcd(4a^3 + 27b^2, N)$.
- 6. While g = N.
- 7. If g > 1 return g.
- 8. Set P = (x, y).
- 9. Try to compute Q = kP with $k = \prod_{p_i^{a_i} \leq B_1} p_i^{a_i}$.
- 10. If the computation failed then
- 11. Return a proper factor of n or start from the beginning.
- 12. Increment B and start from the beginning.

Theorem

Let E be an elliptic curve over the finite field \mathbb{F}_q of characteristic greater than three. Then $\#E \leq 2q + 1$.

The number w(s) of Weierstrass parameters of elliptic curves over $\mathbb{F}_{25\,013}$ with s points:

The number w(s) of Weierstrass parameters of elliptic curves over $\mathbb{F}_{25\,013}$ with s points:

Hasse's bound

If E is an elliptic curve over the finite field \mathbb{F}_q , then

$$|\#E - (q+1)| \le 2\sqrt{q}.$$

Theorem (Lenstra, 1987)

There is a positive constant c such that for every prime p > 3 and any set S with $\#S \ge 3$ of integers from the Hasse interval $(p+1-2\sqrt{p}, p+1+2\sqrt{p})$, we have

 $N_1(S) > c \cdot \#S \cdot p^{3/2} / \ln p \text{ and } N_2(S) > c \cdot \#S \cdot p^{5/2} / \ln p.$

Theorem

On input $N, \ \gcd(N,6) = 1$ not a perfect power with smallest prime factor p, the elliptic curve method runs in an heuristic expected time of

$$\exp((\sqrt{2}+o(1))\sqrt{\ln p\ln\ln p}),$$

when $B_1 = \exp((\sqrt{2}/2 + o(1))\sqrt{\ln p \ln \ln p}).$

For ECM there is a a natural second stage. Assume $\#E_{a,b}(\mathbb{F}_p)$ is not B_1 -smooth. Then the stage one ECM would always fail to find a factor. But it might be that the group order has just a single prime factor exceeding B_1 , i.e.

$$#E_{a,b}(\mathbb{F}_p) = q \cdot \prod_{p_i^{a_i} \le B_1} p_i^{a_i}$$

for p prime, $q > B_1$. Then, simply going through the subsequent primes beyond B_1 is called *stage 2* of the ECM.

Further improvements:

- Use a special parametrization of the curve, i.e. Montgomery curves.
- Choose special curves whose group order is known to be divisible by 12 or 16.
- Use better arithmetic for large integers.

Theorem (Generalized Montgomery identities)

Given an elliptic curve by $gy^2 = x^3 + cx^2 + ax + b$ and two finite points $P = (x_1, y_1)$, $Q = (x_2, y_2)$ then if $x_1 \neq x_2$ we have

$$x_{+}x_{-} = \frac{(x_{1}x_{2} - a)^{2} - 4b(x_{1} + x_{2} + c)}{(x_{1} - x_{2})^{2}},$$

where $P + Q = (x_+, y_+)$ and $P - Q = (x_-, y_-)$. If $x_1 = x_2$ then

$$x_{+} = \frac{(x_{1} - a)^{2} - 4b(2x_{1} + c)}{4(x_{1}^{3} + cx_{1}^{2} + ax_{1} + b)}$$

Definition (Differential addition)

Given finite points $P_1 = [X_1 : Y_1 : Z_1]$, $P_2 = [X_2 : Y_2 : Z_2]$ and $P_1 - P_2 = [X_-, Y_-, Z_-]$ on the homogeneous Montgomery curve with $X_- \neq 0$ then for the point $P_1 + P_2 = [X_+ : Y_+ : Z_+]$ we have

$$X_{+} = Z_{-}((X_{1}X_{2} - aZ_{1}Z_{2})^{2} - 4b(X_{1}Z_{2} + X_{2}Z_{1} + cZ_{1}Z_{2})Z_{1}Z_{2})$$

$$Z_{+} = X_{-}(X_{1}Z_{2} - X_{2}Z_{1})^{2}$$

Definition (Differential doubling)

Given $P_1 = [X_1 : Y_1 : Z_1]$ on the homogeneous Montgomery curve then then for the point $2P_1 = [X_+ : Y_+ : Z_+]$ we have

$$X_{+} = (X_{1} - aZ_{1}^{2})^{2} - 4b(2X_{1} + cZ_{1})Z_{1}^{3}$$

$$Z_{+} = 4Z_{1}(X_{1} + cX_{1}^{2}Z_{1} + aX_{1}Z_{1}^{2} + bZ_{1}^{3})$$

Montgomery curves are given by a cubic $gy^2 = x^3 + cx^2 + ax + b$. Such curves allow particularly nice addition chains:

Algorithm.

Input: A point P = [X : Z], a positive integer k with B bits. Output: The [X : Z] coordinates of kP.

1. If
$$n = 0$$
 then return O .
2. If $n = 1$ then return $[X : Z]$.
3. If $n = 2$ then return double($[X : Z]$).
4. $[U : V] = [X : Z], [T : W] = double([X : Z])$
5. For j from $B - 2$ downto 0 do [6-7]
6. if $k_j = 1$ then
 $[U : V] = add([T : W], [U : V], [X : Z])$
 $[T : W] = double([T : W])$

7. else

$$\begin{split} [U:V] &= \mathsf{add}([U:V], [T:W], [X:Z]) \\ [T:W] &= \mathsf{double}([U:V]) \end{split}$$

8. if $k_0 = 1$ return add([U:V], [T:W], [X:Z])9. return double([U:V])

Theorem

Define an elliptic curve by $E_{\sigma}: y^2 = x^3 + C(\sigma)x^2 + x$ with $C(\sigma) = \frac{(v-u)^3(3u+v)}{4u^3v} - 2$, $u = \sigma^2 - 5$, $v = 4\sigma$ and $\sigma \neq 0, 1, 5$. Then $\#E_{\sigma}$ is divisible by 12.

Furthermore, either on E (or a twist of it), we have a point with $x\text{-coordinate }u^3v^{-3}$ on it.

Thank you!