Cryptanalytic world records, summer 2014

The elliptic curve method

Dr. Daniel Loebenberger

method	year	time
trial division	$-\infty$	$\mathcal{O}^{\sim}\left(2^{n / 2}\right)$
Pollard's $p-1$ method	1974	$\mathcal{O}^{\sim}\left(2^{n / 4}\right)$
Pollard's ρ method	1975	$\mathcal{O}^{\sim}\left(2^{n / 4}\right)$
Pollard's and Strassen's method	1976	$\mathcal{O}^{\sim}\left(2^{n / 4}\right)$
Morrison's and Brillhart's continued fractions	1975	$\exp \left(\mathcal{O}^{\sim}\left(n^{1 / 2}\right)\right)$
Dixon's random squares, quadratic sieve	1981	$\exp \left(\mathcal{O}^{\sim}\left(n^{1 / 2}\right)\right)$
Lenstra's elliptic curves	1987	$\exp \left(\mathcal{O}^{\sim}\left(n^{1 / 2}\right)\right)$
number field sieve	1990	$\exp \left(\mathcal{O}^{\sim}\left(n^{1 / 3}\right)\right)$
Shor's quantum algorithm	1994	$\mathcal{O}\left(n^{3}\right) \mathrm{q}$. .ops.

Pollard's $p-1$ method

Assume the number $N=p \cdot q$ to be factored has the property that $p-1$ is B-smooth. Furthermore, assume you found $e \in \mathbb{Z}$, such that $p-1$ divides e. If we take $a \in \mathbb{Z}_{N}^{\times}$, then $a^{e}=1 \in \mathbb{Z}_{p}^{\times}$. If additionally $a^{e} \neq 1 \in \mathbb{Z}_{q}^{\times}$, we find by computing $\operatorname{gcd}\left(a^{e}-1, N\right)=p$ a proper factor of N.

The method crucially depends on the nature of the number N to be factored. Now, the elliptic curve method modifies this approach: Instead of working in \mathbb{Z}_{N}, we actually work in the group of points of an elliptic curve!

A family of elliptic curves with the point at infinity:

Definition

Let F be a field of characteristic different from 2 and 3 , and $a, b \in F$ with $4 a^{3}+27 b^{2} \neq 0$. Then

$$
E=\left\{(u, v) \in F^{2}: v^{2}=u^{3}+a u+b\right\} \dot{\cup}\{\mathcal{O}\} \subseteq F^{2} \dot{\cup}\{\mathcal{O}\}
$$

is an elliptic curve over F. Here \mathcal{O} denotes the "point at infinity" on E. The Weierstrass equation for E is

$$
y^{2}-\left(x^{3}+a x+b\right)=0
$$

E consists of its root (u, v), and a and b are the Weierstrass coefficients of E.

Adding two points on the elliptic curve $y^{2}=x^{3}-x$:

Definition

For $a, b \in \mathbb{Z}_{N}$ with $\operatorname{gcd}(N, 6)=1$ and $\operatorname{gcd}\left(4 a^{3}+27 b^{2}, N\right)=1$, we call the set

$$
E=\left\{(u, v) \in \mathbb{Z}_{N}^{2}: v^{2}=u^{3}+a u+b\right\} \dot{\cup}\{\mathcal{O}\}
$$

an elliptic pseudocurve.

AlGorithm. Elliptic curve method.
Input: An integer $N \geq 2$ with $\operatorname{gcd}(N, 6)=1$ and N not a perfect power.
Output: A proper factor of N.

1. Choose the stage-one limit B_{1}, e.g. $B_{1}=10000$.
2. Repeat 3-5
3. Choose randomly $x, y, a \in \mathbb{Z}_{N}$.
4. Set $b=\left(y^{2}-x^{3}-a x\right)$ modulo N.
5. Compute $g=\operatorname{gcd}\left(4 a^{3}+27 b^{2}, N\right)$.
6. While $g=N$.
7. If $g>1$ return g.
8. Set $P=(x, y)$.
9. Try to compute $Q=k P$ with $k=\prod_{p_{i}{ }_{i} \leq B_{1}} p_{i}^{a_{i}}$.
10. If the computation failed then
11. Return a proper factor of n or start from the beginning.
12. Increment B and start from the beginning.

Theorem
Let E be an elliptic curve over the finite field \mathbb{F}_{q} of characteristic greater than three. Then $\# E \leq 2 q+1$.

The number $w(s)$ of Weierstrass parameters of elliptic curves over \mathbb{F}_{25013} with s points:

The number $w(s)$ of Weierstrass parameters of elliptic curves over \mathbb{F}_{25013} with s points:

Hasse's bound
If E is an elliptic curve over the finite field \mathbb{F}_{q}, then

$$
|\# E-(q+1)| \leq 2 \sqrt{q} .
$$

Theorem (Lenstra, 1987)

There is a positive constant c such that for every prime $p>3$ and any set S with $\# S \geq 3$ of integers from the Hasse interval $(p+1-2 \sqrt{p}, p+1+2 \sqrt{p})$, we have

$$
N_{1}(S)>c \cdot \# S \cdot p^{3 / 2} / \ln p \text { and } N_{2}(S)>c \cdot \# S \cdot p^{5 / 2} / \ln p
$$

Theorem
On input $N, \operatorname{gcd}(N, 6)=1$ not a perfect power with smallest prime factor p, the elliptic curve method runs in an heuristic expected time of

$$
\exp ((\sqrt{2}+o(1)) \sqrt{\ln p \ln \ln p})
$$

when $B_{1}=\exp ((\sqrt{2} / 2+o(1)) \sqrt{\ln p \ln \ln p})$.

For ECM there is a a natural second stage. Assume $\# E_{a, b}\left(\mathbb{F}_{p}\right)$ is not B_{1}-smooth. Then the stage one ECM would always fail to find a factor. But it might be that the group order has just a single prime factor exceeding B_{1}, i.e.

$$
\# E_{a, b}\left(\mathbb{F}_{p}\right)=q \cdot \prod_{p_{i}^{a_{i}} \leq B_{1}} p_{i}^{a_{i}}
$$

for p prime, $q>B_{1}$. Then, simply going through the subsequent primes beyond B_{1} is called stage 2 of the ECM.

Further improvements:

- Use a special parametrization of the curve, i.e. Montgomery curves.
- Choose special curves whose group order is known to be divisible by 12 or 16 .
- Use better arithmetic for large integers.

Theorem (Generalized Montgomery identities)
Given an elliptic curve by $g y^{2}=x^{3}+c x^{2}+a x+b$ and two finite points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ then if $x_{1} \neq x_{2}$ we have

$$
x_{+} x_{-}=\frac{\left(x_{1} x_{2}-a\right)^{2}-4 b\left(x_{1}+x_{2}+c\right)}{\left(x_{1}-x_{2}\right)^{2}}
$$

where $P+Q=\left(x_{+}, y_{+}\right)$and $P-Q=\left(x_{-}, y_{-}\right)$. If $x_{1}=x_{2}$ then

$$
x_{+}=\frac{\left(x_{1}-a\right)^{2}-4 b\left(2 x_{1}+c\right)}{4\left(x_{1}^{3}+c x_{1}^{2}+a x_{1}+b\right)}
$$

Definition (Differential addition)

Given finite points $P_{1}=\left[X_{1}: Y_{1}: Z_{1}\right], P_{2}=\left[X_{2}: Y_{2}: Z_{2}\right]$ and $P_{1}-P_{2}=\left[X_{-}, Y_{-}, Z_{-}\right]$on the homogeneous Montgomery curve with $X_{-} \neq 0$ then for the point $P_{1}+P_{2}=\left[X_{+}: Y_{+}: Z_{+}\right]$we have

$$
\begin{aligned}
X_{+} & =Z_{-}\left(\left(X_{1} X_{2}-a Z_{1} Z_{2}\right)^{2}-4 b\left(X_{1} Z_{2}+X_{2} Z_{1}+c Z_{1} Z_{2}\right) Z_{1} Z_{2}\right) \\
Z_{+} & =X_{-}\left(X_{1} Z_{2}-X_{2} Z_{1}\right)^{2}
\end{aligned}
$$

Definition (Differential doubling)

Given $P_{1}=\left[X_{1}: Y_{1}: Z_{1}\right]$ on the homogeneous Montgomery curve then then for the point $2 P_{1}=\left[X_{+}: Y_{+}: Z_{+}\right]$we have

$$
\begin{aligned}
X_{+} & =\left(X_{1}-a Z_{1}^{2}\right)^{2}-4 b\left(2 X_{1}+c Z_{1}\right) Z_{1}^{3} \\
Z_{+} & =4 Z_{1}\left(X_{1}+c X_{1}^{2} Z_{1}+a X_{1} Z_{1}^{2}+b Z_{1}^{3}\right)
\end{aligned}
$$

Montgomery curves are given by a cubic $g y^{2}=x^{3}+c x^{2}+a x+b$. Such curves allow particularly nice addition chains:

Algorithm.

Input: A point $P=[X: Z]$, a positive integer k with B bits.
Output: The $[X: Z]$ coordinates of $k P$.

1. If $n=0$ then return \mathcal{O}.
2. If $n=1$ then return $[X: Z]$.
3. If $n=2$ then return double $([X: Z])$.
4. $[U: V]=[X: Z],[T: W]=\operatorname{double}([X: Z])$
5. For j from $B-2$ downto 0 do [6-7]
6. if $k_{j}=1$ then

$$
\begin{aligned}
{[U: V] } & =\operatorname{add}([T: W],[U: V],[X: Z]) \\
{[T: W] } & =\operatorname{double}([T: W])
\end{aligned}
$$

7. else

$$
\begin{aligned}
{[U: V] } & =\operatorname{add}([U: V],[T: W],[X: Z]) \\
{[T: W] } & =\operatorname{double}([U: V])
\end{aligned}
$$

8. if $k_{0}=1$ return add $([U: V],[T: W],[X: Z])$
9. return double($[U: V])$

Theorem
Define an elliptic curve by $E_{\sigma}: y^{2}=x^{3}+C(\sigma) x^{2}+x$ with $C(\sigma)=\frac{(v-u)^{3}(3 u+v)}{4 u^{3} v}-2, u=\sigma^{2}-5, v=4 \sigma$ and $\sigma \neq 0,1,5$.
Then $\# E_{\sigma}$ is divisible by 12 .
Furthermore, either on E (or a twist of it), we have a point with x-coordinate $u^{3} v^{-3}$ on it.

Thank you!

