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method year time

trial division −∞ O∼
(

2n/2
)

Pollard’s p− 1 method 1974 O∼
(

2n/4
)

Pollard’s ρ method 1975 O∼
(

2n/4
)

Pollard’s and Strassen’s method 1976 O∼
(

2n/4
)

Morrison’s and Brillhart’s continued fractions 1975 exp(O∼
(

n1/2
)

)

Dixon’s random squares, quadratic sieve 1981 exp(O∼
(

n1/2
)

)

Lenstra’s elliptic curves 1987 exp(O∼
(

n1/2
)

)

number field sieve 1990 exp(O∼
(

n1/3
)

)
Shor’s quantum algorithm 1994 O

(

n3
)

q.ops.
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Pollard’s p− 1 method

Assume the number N = p · q to be factored has the property that
p− 1 is B-smooth. Furthermore, assume you found e ∈ Z, such
that p− 1 divides e. If we take a ∈ Z

×
N , then ae = 1 ∈ Z

×
p . If

additionally ae 6= 1 ∈ Z
×
q , we find by computing

gcd(ae − 1, N) = p a proper factor of N .
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The method crucially depends on the nature of the number N to
be factored. Now, the elliptic curve method modifies this
approach: Instead of working in ZN , we actually work in the group
of points of an elliptic curve!
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A family of elliptic curves with the point at infinity:
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Definition

Let F be a field of characteristic different from 2 and 3, and
a, b ∈ F with 4a3 + 27b2 6= 0. Then

E = {(u, v) ∈ F 2 : v2 = u3 + au+ b} ∪̇ {O} ⊆ F 2 ∪̇ {O}

is an elliptic curve over F . Here O denotes the “point at infinity”
on E. The Weierstrass equation for E is

y2 − (x3 + ax+ b) = 0,

E consists of its root (u, v), and a and b are the Weierstrass

coefficients of E.
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Adding two points on the elliptic curve y2 = x3 − x:
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Definition

For a, b ∈ ZN with gcd(N, 6) = 1 and gcd(4a3 + 27b2, N) = 1, we
call the set

E = {(u, v) ∈ Z
2
N : v2 = u3 + au+ b} ∪̇ {O}

an elliptic pseudocurve.
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Algorithm. Elliptic curve method.

Input: An integer N ≥ 2 with gcd(N, 6) = 1 and N not a perfect
power.

Output: A proper factor of N .

1. Choose the stage-one limit B1, e.g. B1 = 10000.
2. Repeat 3–5

3. Choose randomly x, y, a ∈ ZN .
4. Set b = (y2 − x3 − ax) modulo N .
5. Compute g = gcd(4a3 + 27b2, N).

6. While g = N .
7. If g > 1 return g.
8. Set P = (x, y).
9. Try to compute Q = kP with k =

∏

p
ai

i
≤B1

paii .

10. If the computation failed then
11. Return a proper factor of n or start from the beginning.
12. Increment B and start from the beginning.
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Theorem

Let E be an elliptic curve over the finite field Fq of characteristic
greater than three. Then #E ≤ 2q + 1.
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The number w(s) of Weierstrass parameters of elliptic curves over
F25 013 with s points:
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Hasse’s bound

If E is an elliptic curve over the finite field Fq, then

|#E − (q + 1)| ≤ 2
√
q.

9/21



Theorem (Lenstra, 1987)

There is a positive constant c such that for every prime p > 3 and
any set S with #S ≥ 3 of integers from the Hasse interval
(p + 1− 2

√
p, p+ 1 + 2

√
p), we have

N1(S) > c ·#S · p3/2/ ln p and N2(S) > c ·#S · p5/2/ ln p.
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Theorem

On input N , gcd(N, 6) = 1 not a perfect power with smallest
prime factor p, the elliptic curve method runs in an heuristic
expected time of

exp((
√
2 + o(1))

√

ln p ln ln p),

when B1 = exp((
√
2/2 + o(1))

√
ln p ln ln p).
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For ECM there is a a natural second stage. Assume #Ea,b(Fp) is
not B1-smooth. Then the stage one ECM would always fail to find
a factor. But it might be that the group order has just a single

prime factor exceeding B1, i.e.

#Ea,b(Fp) = q ·
∏

p
ai

i
≤B1

paii

for p prime, q > B1. Then, simply going through the subsequent
primes beyond B1 is called stage 2 of the ECM.
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Further improvements:

◮ Use a special parametrization of the curve, i.e. Montgomery
curves.

◮ Choose special curves whose group order is known to be
divisible by 12 or 16.

◮ Use better arithmetic for large integers.
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Theorem (Generalized Montgomery identities)

Given an elliptic curve by gy2 = x3 + cx2 + ax+ b and two finite
points P = (x1, y1), Q = (x2, y2) then if x1 6= x2 we have

x+x− =
(x1x2 − a)2 − 4b(x1 + x2 + c)

(x1 − x2)2
,

where P +Q = (x+, y+) and P −Q = (x−, y−). If x1 = x2 then

x+ =
(x1 − a)2 − 4b(2x1 + c)

4(x31 + cx21 + ax1 + b)
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Definition (Differential addition)

Given finite points P1 = [X1 : Y1 : Z1], P2 = [X2 : Y2 : Z2] and
P1 − P2 = [X−, Y−, Z−] on the homogeneous Montgomery curve
with X− 6= 0 then for the point P1 +P2 = [X+ : Y+ : Z+] we have

X+ = Z−((X1X2 − aZ1Z2)
2 − 4b(X1Z2 +X2Z1 + cZ1Z2)Z1Z2)

Z+ = X−(X1Z2 −X2Z1)
2

Definition (Differential doubling)

Given P1 = [X1 : Y1 : Z1] on the homogeneous Montgomery curve
then then for the point 2P1 = [X+ : Y+ : Z+] we have

X+ = (X1 − aZ2
1 )

2 − 4b(2X1 + cZ1)Z
3
1

Z+ = 4Z1(X1 + cX2
1Z1 + aX1Z

2
1 + bZ3

1 )
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Montgomery curves are given by a cubic gy2 = x3 + cx2 + ax+ b.
Such curves allow particularly nice addition chains:

Algorithm.

Input: A point P = [X : Z], a positive integer k with B bits.
Output: The [X : Z] coordinates of kP .

1. If n = 0 then return O.
2. If n = 1 then return [X : Z].
3. If n = 2 then return double([X : Z]).
4. [U : V ] = [X : Z], [T : W ] = double([X : Z])
5. For j from B − 2 downto 0 do [6-7]
6. if kj = 1 then

[U : V ] = add([T : W ], [U : V ], [X : Z])

[T : W ] = double([T : W ])

7. else

[U : V ] = add([U : V ], [T : W ], [X : Z])

[T : W ] = double([U : V ])

8. if k0 = 1 return add([U : V ], [T : W ], [X : Z])
9. return double([U : V ])
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Theorem

Define an elliptic curve by Eσ : y2 = x3 + C(σ)x2 + x with

C(σ) = (v−u)3(3u+v)
4u3v − 2, u = σ2 − 5, v = 4σ and σ 6= 0, 1, 5.

Then #Eσ is divisible by 12.

Furthermore, either on E (or a twist of it), we have a point with
x-coordinate u3v−3 on it.
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Thank you!
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