8. Exercise sheet
Hand in solutions until Saturday, 31 May 2014, 23:59:59

Exercise 8.1 (The runtime of the GNFS). (6 points)
Prove that the general number field sieve on an integer \(N \) of bit-size \(n \) has an heuristic asymptotic complexity of \(L_{1/3}^{1/3}(n) \) when we chose the degree \(d \) of the underlying polynomial \(f \in \mathbb{Z}[x] \) optimally. More precisely, show that its complexity can be estimated as
\[
\exp(((64/9)^{1/3} + o(1))n^{1/3}(\log n)^{2/3}).
\]
Hint: Employ Pomerance’s theorem from the lecture and take the derivative with respect to \(d \) to find the minimum of the runtime function.

Exercise 8.2 (A magic device). (6 points)
In this exercise we will delve into a problem which relates nicely to the problem of integer factorization of a composite, odd number \(N \). Suppose you have a magic device that computes in polynomial time (in the length of the integer \(N \)), given an element \(a \in \mathbb{Z}^*_N \), either one solution \(b \in \mathbb{Z}^*_N \) with \(b^2 = a \) or tells you that no such solution exists. You have no control of the inner working of the device, i.e. if there are several solutions \(b \in \mathbb{Z}^*_N \) with \(b^2 = a \), the device will pick one of them using a method unknown to you. Show how, armed with such a device, you can then factor integers in probabilistic polynomial time. Conversely, show how you can build such a device, if you can factor integers in polynomial time.

Exercise 8.3 (ECM world records). (7 points)
Look at the following web-page:

http://www.loria.fr/~zimmerma/records/ecmnet.html

We will now explore this page in a little more detail.

(i) Report detailed which world records were set on the web-page and which purpose they serve.

(ii) From the data given on the webpage, try to extrapolate in which calendar year we will be able to find a 90 digit factor using ECM.