The art of cryptography: cryptanalytic world records

11. Assignment: Permutation-based cryptography

(Due: Sunday, 29 June 2014, 23⁵⁹ CEST)

Exercise 1 (Differential cryptanalysis). In the lecture, we found a differential trail through the first two rounds of baby-AES with propagation ratio 1/64. For the corresponding differential attack, we required 192 pairs of plaintext-ciphertext pairs with corresponding input difference.

For this exercise, the S-box of baby-AES is replaced with the following new 4-bit S-box S'.

x	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
S'(x)	Е	2	1	3	D	9	0	6	F	4	5	А	8	С	7	В

We call the resulting cipher baby-AES'.

- (a) (3 points) Compute the output difference distribution of S' for input difference $\Delta x = 0001$. [Hint: Eight xors suffice.]
- (b) (4 points) The difference distribution table of S' is displayed below, but the first three rows are missing. Complete the table.

$\Delta x \backslash \Delta y$	0	1	2	3	4	5	6	7	8	9	А	В	\mathbf{C}	D	Е	F
0																
1																
2																
3	0	2	0	4	0	2	0	0	0	2	0	4	0	2	0	0
4	0	4	2	2	0	2	0	2	2	0	0	2	0	0	0	0
5	0	0	0	4	0	0	0	4	0	0	0	0	2	2	2	2
6	0	0	0	0	2	0	2	0	2	0	2	0	2	2	2	2
7	0	0	4	2	2	0	0	0	4	2	0	0	0	0	2	0
8	0	2	0	0	2	4	2	2	0	2	0	0	0	2	0	0
9	0	6	0	0	0	0	2	0	0	0	2	4	0	2	0	0
А	0	0	2	0	0	0	0	2	4	0	4	2	0	0	2	0
В	0	0	0	0	2	2	2	2	0	0	0	0	4	0	4	0
\mathbf{C}	0	0	2	0	0	2	4	0	2	0	0	0	2	2	2	0
D	0	0	2	2	2	0	2	0	0	2	6	0	0	0	0	0
Ε	0	0	2	2	0	0	0	0	2	6	0	0	0	0	0	4
\mathbf{F}	0	0	0	0	2	4	0	2	0	2	0	2	2	2	0	0

- (c) (2 points) Use a computer algebra system of your choice (for example Sage) to compute the difference distribution table for S' and check your answers for (a) and (b).
- (d) (1 point) What is the maximal propagation ratio for a nonzero differential in S'?
- (e) (3 points) A "differential attacker" will search for a differential trail with large propagation ratio. Use (d) to derive an upper bound for the propagation ratio of a any nonzero differential trail through the first two rounds of baby-AES'.
- (f) (+2 points) Find a differential trail through the first two rounds of baby-AES' whose propagation ratio achieves the upper bound of (e).
- (g) (2 points) How many pairs of plaintext-ciphertext pairs will you request for a differential attack against of baby-AES' using a trail whose propagation ratio matches the upper bound obtained in (e). [Use the same implicit constant as we used for the attack on the original baby-AES described at the beginning.]

Exercise 2 (How many samples?). You visit a casino with 2^k lotteries which have a probability of winning of $1/2^{\ell}$ each. One of them is broken though and has a probability of winning of $p + 1/2^{\ell}$ with p > 0.

We run the following experiment to find the "lucky" machine

- 1. Run each lottery N times and record the number of "wins".
- 2. We call the set of machines with the most wins W
- 3. The experiment is *successful* if the "lucky" machine is an element of W, and *uniquely successful* if the "lucky" machine is the unique element of W.

Determine by experiment the answer to the following questions for $k = \ell = 8$ and p = 1/64.

- (a) (5 points) For which size of N do you expect the experiment to be successful.
- (b) (+5 points) For which size of N do you expect the experiment to be uniquely successful.

Exercise 3 (the average S-box). (5 points)

For the following S-boxes on $\mathbb{F}_{16} = \mathbb{F}_2[t]/(t^4 + t + 1)$ draw the difference distribution matrix and find the maximal difference probability.

(a) identity id,

S = mq.SBox(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) # identity S.difference_distribution_matrix() S.maximal_difference_probability()

- (b) affine linear transformation $x \mapsto (t^3 + t^2 + 1) \cdot x + (t^2 + t)$,
- (c) patched inverse

$$\operatorname{inv}(x) = \begin{cases} 0 & \text{if } x = 0, \\ x^{-1} & \text{else,} \end{cases}$$

- (d) baby-AES S-box.
- (e) inverse of the baby-AES S-box.
- (f) Plot the distribution of the maximal difference probability of 1 000 randomly chosen S-boxes.