The art of cryptography: cryptanalytic world records

12. Assignment: Permutation-based cryptography

(Due: Sunday, 6 July 2014, 23⁵⁹ CEST)

Exercise 1 (The dual of \mathbb{F}_{2^n}). (3 points) Show that every linear Boolean function on \mathbb{F}_{2^n} is of the form $x \mapsto a \star x$ for some $a \in \mathbb{F}_{2^n}$. (The vector space of these functions is called the *dual* of \mathbb{F}_{2^n} and denoted $\mathbb{F}_{2^n}^*$.)

Exercise 2 (Independent random variables). (3+2 points) Let $a, b, c \in \mathbb{F}_2^4$. What can you derive about $\operatorname{corr}_S(a+b,c)$ from $\operatorname{corr}_S(a,c)$ and $\operatorname{corr}_S(b,c)$?

Bonus points for finding a necessary and sufficient condition for

$$\operatorname{corr}_{S}(a+b,c) = \operatorname{corr}_{S}(a,c)\operatorname{corr}_{S}(b,c).$$

Exercise 3 (Linear cryptanalysis). For this exercise, the S-box of baby-AES is replaced with the following new 4-bit S-box S'.

We call the resulting cipher new baby-AES'.

- (a) (2 points) Compute the correlation of the input/output-mask 0001 \parallel 1110 on S'.
- (b) (4 points) The correlation table of S' is displayed below, but the first two rows are missing. Complete the table.

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0																
1																
2	0	4	0	4	-4	0	-4	0	-4	0	4	-8	-8	-4	0	4
3	0	0	4	4	0	8	4	-4	-4	-4	0	0	4	-4	8	0
4	0	4	0	-4	0	4	0	-4	4	-8	4	0	-4	0	-4	-8
5	0	8	-4	-4	4	4	0	8	-4	4	0	0	0	0	4	-4
6	0	0	8	0	4	4	-4	4	0	0	0	8	-4	-4	-4	4
7	0	-4	-4	0	8	-4	4	0	0	-4	-4	0	-8	-4	4	0
8	0	4	4	0	0	-4	-4	0	4	0	-8	-4	4	-8	0	-4
9	0	0	0	8	4	4	-4	4	4	-4	-4	-4	0	8	0	0
A	0	8	4	4	-4	-4	8	0	0	0	-4	4	-4	4	0	0
В	0	-4	8	-4	0	-4	0	4	-8	-4	0	-4	0	4	0	-4
\mathbf{C}	0	0	4	4	8	0	4	-4	0	8	4	-4	0	0	-4	-4
D	0	-4	0	-4	-4	8	4	0	0	4	-8	-4	-4	0	-4	0
\mathbf{E}	0	-4	-4	8	-4	0	0	4	-4	0	0	4	0	-4	-4	-8
\mathbf{F}	0	0	0	0	0	0	8	8	4	-4	4	-4	4	-4	-4	4

(c) (1 point) What is the maximal magnitude of correlation?

Exercise 4 (The average S-box, continued). (5+3 points) For the following S-boxes on $\mathbb{F}_{16} = \mathbb{F}_2[t]/(t^4+t+1)$ determine the maximal magnitude of correlation.

- (a) identity id,
- (b) affine linear transformation $x \mapsto (t^3 + t^2 + 1) \cdot x + (t^2 + t)$,
- (c) patched inverse

$$\operatorname{inv}(x) = \begin{cases} 0 & \text{if } x = 0, \\ x^{-1} & \text{else,} \end{cases}$$

- (d) baby-AES S-box,
- (e) inverse of the baby-AES S-box,
- (f) Pick 1 000 S-boxes at random. Draw the distribution of the maximal magnitude of correlation.