3. Exercise sheet

Hand in solutions until
Wednesday, 19 November 2014, 23:59:59

Note the modified hand-in time!

Exercise 3.1 (Properties of hash functions). (6 points)

Let \(h_1 \) and \(h_2 \) be two hash functions. Let \(h = h_1 \circ h_2 \) be the concatenation of them.

(i) Is \(h \) collision resistant if at least one of \(h_1 \) and \(h_2 \) is collision resistant?

(ii) Determine whether an analogous claim holds for second pre-image resistance and inversion resistance, respectively. Prove your claims.

Now assume \(h \) is any collision resistant hash function.

(iii) Is the composition \(h \circ h \) necessarily collision resistant?

Exercise 3.2 (A discrete log hash function). (8 points)

A prime number \(q \) so that \(p = 2q + 1 \) is also prime, is called a Sophie Germain prime. We choose \(q = 7541 \) and \(p = 2 \cdot 7541 + 1 \) both prime and want to define a hash function on the set \(\mathbb{Z}_q \times \mathbb{Z}_q \).

(i) Let \(g = 604 \) and \(z = 3791 \). Prove that \(\text{ord}(g) = \text{ord}(z) = q \).

The elements \(g \) and \(z \) actually generate the same subgroup of \(\mathbb{Z}_p^\times \), i.e. \(\langle g \rangle = \langle z \rangle \). Call this subgroup \(G \).

(ii) Now, we can define a hash function

\[
h : \mathbb{Z}_q \times \mathbb{Z}_q \to G, (a, b) \mapsto g^a z^b.
\]

Compute \(h(7431, 5564) \) and \(h(1459, 954) \) and compare them.
(iii) In (ii) you found a collision for the hash function \(h \). This enables you to compute the discrete logarithm \(\text{dlog}_g z \). Do it.

(iv) Show the converse: If you can compute discrete logarithms in \(G \), find a way to generate a collision.

(v) Explain whether you would employ such a hash function in practice.

Exercise 3.3 (Expected number of iterations). (9 points)

We are given a discrete random variable \(X \), for example the result of a single roll of a fair die. The values that \(X \) can take are denoted by \(x \) and the respective probability is given by \(\text{prob}(X = x) \). For the example, the \(x \) are taken from the set \(A = \{1, 2, 3, 4, 5, 6\} \) each with \(\text{prob}(X = x) = \frac{1}{6} \).

We are interested in the expected value \(E(X) \) defined as

\[
E(X) = \sum x \cdot \text{prob}(X = x),
\]

where the sum is taken over all possible values of \(X \). In the example above, this returns as the expected value for the roll of a single die

\[
E(X) = \sum_{x \in A} x \cdot \frac{1}{6} = \frac{21}{6} = 3.5.
\]

Next, we roll the die until a certain number, say "2", appears for the first time. The random variable \(Y \) is now the number of rolls that are performed, until this happens.

(i) What is \(\text{prob}(Y = i) \), i.e. the probability that "2" appears for the first time in the \(i \)th roll?

(ii) Prove that \(E(Y) = 6 \). (You may have use for the generalization of the formula for the geometric series \(\sum_{k=n}^\infty q^k = q^n/(1 - q) \) for \(|q| < 1 \).

(iii) Generalize the preceding steps to prove the more general proposition

Proposition. Suppose that an event \(A \) occurs in an experiment with probability \(p \), and we repeat the experiment until \(A \) occurs. Then the expected number of executions until \(A \) happens is \(1/p \).

Exercise 3.4 (Energy cost). (0+4 points)

Estimate the total energy consumed by performing \(2^{128} \) computations of the SHA-256 compression function with modern high-end CPUs. Extrapolate that to 10, 20, 30 years from now. Do the same for \(2^{256} \) and \(2^{512} \) such computations.