The following are important requirements for digital signatures.

- The signature must be tightly attached to the signed document.

- It should be easy to *sign* for the legitimate signer, easy to *verify* the signature for the recipient, and hard to *forge* a signature.

- The signer should not be able to deny that he signed the document.

- Sometimes it is important that a signed document can only be used once for its legitimate purpose, not several times (say, a cheque).
We can use any public key encryption scheme (set-up, keygen, enc, dec) to obtain a signature scheme, by simply reversing encryption and decryption.

\[
x = \text{dec}_{sk}(m)
\]

\[
y = \text{enc}_{pk}(x); \text{ verify: } m \overset{?}{=} y
\]

\[
\text{ver}_{pk}(m, z) = \text{“true”} \iff m = \text{enc}_{pk}(z).
\]
Protocol. ElGamal signature scheme.

Set-up.

Input: a security parameter n given in unary.
Output: as below.

1. A cyclic group $G = \langle g \rangle$ with $d = \#G$ elements, where d is an n-bit number. We also have an injective encoding function $G \rightarrow \mathbb{Z}_d$, denoted as $x \mapsto x^*$, which is easy to compute but otherwise has no particular properties. All these data are published.
Protocol. ElGamal signature scheme.

Key generation.

Output: secret and public keys.

1. Secret key \(sk = a \leftarrow \mathbb{Z}_d \) and public key \(pk = A = g^a \in G \).
Protocol. ElGamal signature scheme.

Signing.

Input: a message \(m \in \mathbb{Z}_d \).
Output: a signature \(\text{sig}_{sk}(m) \in G \times \mathbb{Z}_d \) of \(m \).

1. Choose a secret session key \(k \leftarrow \mathbb{Z}_d^\times \).
2. \(K \leftarrow g^k \in G \).
3. Calculate \(b \leftarrow k^{-1} \cdot (m - aK^*) \) in \(\mathbb{Z}_d \), where \(k^{-1} \) is the inverse of \(k \) in \(\mathbb{Z}_d \).
4. Transmit \(m \) and its signature \(\text{sig}_{sk}(m) = (K, b) \).

Verifying.

Input: message m and a pair $(z, c) \in G \times \mathbb{Z}_d$.
Output: $\text{ver}_{pk}(m, z, c)$, which is either “true” or “false”.

1. Compute $u \leftarrow g^m$ and $v \leftarrow A^{z^*} z^c$ in G.
2. If $z \neq 1$ and $u = v$ then return “true” else return “false”.
\[A = g^a \]

\[K = g^k \]

\[b = k^{-1}(m - aK^*) \]

Bob: \[m, (K, b) \] Alice: \[g^m \overset{?}{=} A^{K^*}K^b \]
Example

Bob has set up the publicly known group $G = \mathbb{Z}_{17}^\times$, with order $d = 16$, $g = 3$, and the “identity” mapping \ast as above. Now he chooses his secret key, say $sk = a = 9$, and publishes $pk = A = 3^9 = 14$ in \mathbb{Z}_{17}^\times. Suppose that he wants to sign $m = 11$ and chooses $k = 5$ as secret session key. Then indeed $\text{gcd}(5, 17 - 1) = 1$, and $k^{-1} = -3 = 13$ in \mathbb{Z}_{16}. He calculates

$$K = 3^5 = 5 \text{ in } \mathbb{Z}_{17},$$

$$b = 13 \cdot (11 - 9 \cdot 5) = 6 \text{ in } \mathbb{Z}_{16},$$

since $K^* = K = 5$. Bob sends the message 11 together with its signature $\text{sig}_9(11) = (5, 6)$. Alice checks that $5 \neq 1$ and computes

$$u = g^m = 3^{11} = 7 \text{ in } \mathbb{Z}_{17},$$

$$v = A^{K^*} K^b = 14^5 \cdot 5^6 = 7 \text{ in } \mathbb{Z}_{17},$$

and accepts the message as properly signed.
Lemma

Let d be a prime number. Then the verification procedure works correctly as specified, and the signature scheme can be implemented efficiently.
Schnorr takes for his signature scheme a large prime p and the large group \mathbb{Z}_p^\times; this is what ElGamal used. But now Schnorr chooses a fairly small prime divisor d of $p - 1 = \#\mathbb{Z}_p^\times$ with ℓ bits, and a subgroup $G \subseteq \mathbb{Z}_p^\times$ of order d. Then we have index calculus attacks on \mathbb{Z}_p^\times or generic methods for G; nothing better is known. The latter take time $\Omega(\sqrt{d})$.

Set-up.

Input: two security parameters $\ell < n$ in unary.

1. Choose an ℓ-bit prime d and an n-bit prime p with d dividing $p - 1$, a generator g of a group $G = \langle g \rangle \subseteq \mathbb{Z}_p^\times$ of order d, and a map $*$ from \mathbb{Z}_p^\times to \mathbb{Z}_d.
Protocol. Schnorr signature scheme (DSA).

Key Generation.

Output: secret and public keys.

1. Secret key $sk = a \leftarrow \mathbb{Z}_d$ and public key $pk = A \leftarrow g^a \in G$.
Protocol. Schnorr signature scheme (DSA).

Signing.

Input: a message $m \in \mathbb{Z}_d$.
Output: a signature $\text{sig}_{sk}(m) \in G \times \mathbb{Z}_d$ of m.

1. Choose a secret session key $k \leftarrow \mathbb{Z}_d^\times$.
2. $K \leftarrow g^k \in G$.
3. Calculate $b \leftarrow k^{-1} \cdot (m - aK^*)$ in \mathbb{Z}_d, where k^{-1} is the inverse of k in \mathbb{Z}_d.
4. Transmit m and its signature $\text{sig}_{sk}(m) = (K, b)$.

Verifying.

Input: message m and a pair $(z, c) \in G \times \mathbb{Z}_d$.
Output: $\text{ver}_{pk}(m, z, c)$, which is either “true” or “false”.

1. Compute $u \leftarrow g^m$ and $v \leftarrow A^{z^*} z^c$ in G.
2. If $z \neq 1$, $z^d = 1$, and $u = v$ then return “true” else return “false”.
Figure: Tradeoff between ℓ-bit generic discrete logarithms and n-bit index calculus.
<table>
<thead>
<tr>
<th>cost A of arithmetic</th>
<th>ElGamal</th>
<th>DSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost of g^k</td>
<td>$(2048)^2$</td>
<td>$(2048)^2$</td>
</tr>
<tr>
<td>message length</td>
<td>$A \log_2 p \approx A \cdot 2048$</td>
<td>$A \log_2 d \approx A \cdot 200$</td>
</tr>
<tr>
<td>signature length</td>
<td>2048 bits</td>
<td>200 bits</td>
</tr>
<tr>
<td>attack</td>
<td>4096 bits</td>
<td>400 bits (!)</td>
</tr>
<tr>
<td></td>
<td>DL in \mathbb{Z}_p^\times</td>
<td>DL in \mathbb{Z}_p^\times or in G</td>
</tr>
</tbody>
</table>