Esecurity: secure internet & e-cash, summer 2015
MICHAEL NÜSKEN

10. Exercise sheet
Hand in solutions until Tuesday, 30 June 2015, 09:00

Exercise 10.1 (Compositions of hash functions). (7 points)
Consider to efficiently evaluable functions \(g : \{0, 1\}^n \to \{0, 1\}^m \) and \(f : \{0, 1\}^m \to \{0, 1\}^\ell \) with \(n > m > \ell \) and their composition \(f \circ g : \{0, 1\}^n \to \{0, 1\}^\ell \). Prove the following:

(i) If \(f \circ g \) is one-way then \(f \) is one-way or \(g \) is one-way. \(\Box \)

(ii) If \(f \) is one-way then \(f \circ g \) is one-way. \(\Box \)

(iii) If \(f \circ g \) is collision resistant then \(g \) is collision resistant. \(\Box \)

(iv) If \(f \circ g \) is collision resistant then \(f \) is collision resistant or \(g \) is one-way. \(\Box \)

(v) If \(f \) and \(g \) are both collision resistant then \(f \circ g \) is collision resistant. \(\Box \)

Exercise 10.2 (Breaking the Chaum-Fiat-Naor protocol?). (5+8 points)
From a hash function \(h : \{0, 1\}^\ell \to \mathbb{Z}_N \) we build a new hash function \(h^* : \{0, 1\}^{\ell k} \to \mathbb{Z}_N \) by sending a message \(m = m_1 \parallel \ldots \parallel m_k \in \{0, 1\}^{\ell k} \) with \(m_i \in \{0, 1\}^\ell \) to \(h^*(m) = \prod_{1 \leq i \leq k} h(m_i) \). Assume \(h \) is collision resistant.

(i) Show that \(h^* \) is not collision resistant. \(\Box \)

(ii) Let \(k = 2 \) and assume that for uniformly chosen \(m \) the hash values \(h(m) \) are uniformly distributed. We consider pairs \((m_1 \parallel m_2, m_2 \parallel m_1) \) as trivial collisions. Describe an algorithm that computes a non-trivial collision of \(h^* \). Is it faster than the birthday-attack? Compute its expected runtime.

\textit{Hint:} Consider the zero divisors in \(\mathbb{Z}_N \). Maybe start with \(N \) being prime. \(\Box \)

(iii) Generalize your algorithm from (ii) to arbitrary \(k \) and compute the expected runtime. \(\Box \)

(iv) How can Alice use an algorithm from (iii) to cheat in the Chaum-Fiat-Naor protocol? \(\Box \)
Exercise 10.3 (Are blind signature schemes EUF-KMA insecure?).
(0+5 points)

Consider an signature scheme S. Denote by $\text{sign}_{sk}(m)$ a valid signature of m under S. Assume one can build a blind signature scheme from S such that there is a blinding function b_r and an unblinding function u_r depending on a blinding key r such that $u_r(\text{sign}_{sk}(b_r(m))) = \text{sign}_{sk}(m)$ and it is hard or impossible to recover m from $b_r(m)$ without the knowledge of r.

(i) Prove that if b_r is not one-way, ie. for given \tilde{m} it is easy to compute m such that $\tilde{m} = b_r(m)$, then S is not EUF-KMA secure, ie. existentially forgeable under know message attacks.

(ii) Build a blind signature scheme from RSA-FDH.

(iii) Is your scheme EUF-KSA secure? Why is this no contradiction to (i).