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1. Introduction
1.1. Motivation

1 Random Number Generators (RNG) are incorporatednamy IT products and play an
important role in numerous cryptographic applicasioHowever, the Information Technology
Security Evaluation Criteria (ITSEC) and the Comm@riteria (CC) do not specify any
uniform evaluation criteria for RNG, nor do theioreesponding evaluation methodologies
(Information Technology Security Evaluation Many&fSEM]) and Common Evaluation
Methodology [CEM]) specify such criteria.

2 The document is intended for use by developerdyata@s and certifiers.

3 Chapter 2 introduces this field, addresses basicequs, and explains foundations that support
the understanding of the remaining parts of thisudeent. Chapter 3 defines a CC family
FCS_RNG and the extended component FCS_RNG.1 feeriggon of security functional
requirements in protection profiles or securitygtas. Chapter 4 describes pre-defined classes
for physical true, non-physical true, deterministicd hybrid random number generators. It
sketches RNG specific information and evidencedéeeloper is expected to provide for the
assurance components selected in the ST. The basicepts and evaluation criteria are
illustrated by additional examples in chapter 5.

4 All software tools referenced in the following paraphs are freeware. The statistical
calculations may be performed using:

The BSI test suite for statistical test proceduxeand B, which is available on the BSI
website [AIS2031Stat].

The NIST test suite and guidance documentation(8R22], which is available on the
NIST RNG project  website describing the implementedtests
http://csrc.nist.gov/groups/ST/toolkit/rng/docurnegign_software.html.

The statistics program R, which is available on wrebsite www.r-project.org. There
are several books (e.g., [SaHeO06], [Prus06], [Lidp@escribing statistical methods
together with R scripts implementing these methods.

5 This document updates the previous documents [AA8R0and [AIS31An] used as the
evaluation methodology for RNG in the German CCesod. The families described in parts 2
and 3 relate to the RNG classes described in [AM®2@&nd [AIS31An] as follows (coarse
comparisons):

Comparable to [AIS20

|
or [AIS31] class Comments

RNG class

Physical RNG with internal tests that detect altota
PTG.1 AIS31, P1 failure of the entropy source and non-tolerable
statistical defects of the internal random numbers

PTG.2 AIS31, P2 PTG.1, additionally a stochastic model of the gnyro
source and statistical tests of the random ”raw

18 September 2011 AIS 20/ AIS 31 page 7
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Comparable to [AIS20Q]
RNG class or [AIS31] class Comments
numbers (instead of the internal random numbers
PTG.2, additionally with cryptographic post-
PTG.3 No counterpart processing (hybrid PTRNG)
DRG.1 AIS20, K2, partly K3 ﬁgng 03vlv]lth forward secrecy according [to
DRG.1 with additional backward secrecy according
DRG.2 AIS20, K3 t0 [ISO18031]
DRG.3 AIS20, K4 DRG.2 with additional enhanced heatd secrecy
DRG.4 No counterpart (Dhsgng Isl\gplG?ddltlonal enhanced forward secrecy
NTG.1 No counterpart Non-physical true RNG withrepy estimation

1.2.  Abbreviations

6 In this document we use the following abbreviations
RNG random number generator
DRNG deterministic RNG
TRNG true RNG
PTRNG physical true RNG (short: physical RKG)
NPTRNG non-physical true RNG
das digitized analog noise signal
iid independent and identically distributed
pp. pages
iff if and only if
{xy,...} A list x,y,... of indices, e.g., ADV_FSP.{1}2stands for “ADV_FSP.1 and

ADV_FSP.2”

1.3.  Common Criteria (Abbreviations)

PP
ST

EAL
ADV
TOE
TSF
SFR

Protection Profile
Security Target

Evaluation Assurance Level
Assurance Development

Target of Evaluation

TOE Security Functionality
Security Functional Requirement

2

To avoid misunderstanding, we do not apply theajghtforward” abbreviation ,PRNG" because thiseof

stands for ,pseudorandom number generator*.

18 September 2011
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1.4.

7

10

11

12

13

14

15

Terminology
In this document we use the following terminology:
Backward secrecy

The assurance that previous output values cannd¢teemined (i.e., computed or guessed with
non-negligible probability) from the current or diné output values.

Bit string
A finite sequence of ones and zeroes.

Binomial distribution

Binomial distribution with parametersandp, P{x = l«} = E f@- pm-

Black box

An idealized mechanism that accepts inputs andymes outputs, which is designed such that
an observer cannot see inside the box or deterexaetly what is happening inside that box.
Contrast with ajlass box

Cryptographic boundary

An explicitly defined continuous perimeter that addishes the physical bounds of a
cryptographic module and contains all the hardwswétyvare and/or firmware components of a
cryptographic module. [ISO/IEC 19790]

Cryptographic post-processing

A post-processing algorithm that generates theratenumbers of a TRNG by means of a
cryptographic mechanism

das-random number

Bit string that results directly from the digitiza of analogue noise signals (das) in a physical
RNG. Das-random numbers constitute a special dasevaandom numbers.

NOTE: Assume, for instance, that a PTRNG uses @&iZdiode. Regular comparisons of the
(amplified) voltage (analogue signal) with a thr@shvalue provide values 0 and 1, which may
be interpreted as das-random numbers. In conti@st;ing oscillators on FPGAs it is not
obvious how to define the analogue signal. At leasthe true sense of the word it may be
problematic to speak of ‘das random number’ in toistext.

NOTE: In [AIS31An] for physical RNGs the term 'dasidom number' was consistently used.
Apart from concrete examples in this document we th&e more general term ‘raw random
number' for both physical and non-physical true BRNG

Deterministic RNG

18 September 2011 AIS 20/ AIS 31 page 9
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16

17

18

19

20

21

22

An RNG that produces random numbers by applyingtarchinistic algorithm to a randomly-
selected seed and, possibly, on additional exténpats.

Digitization
Derivation process of raw random numbers from rawdom signals, usually performed at
discrete points in time.

Endorsed algorithm

Cryptographic algorithm endorsed by a certificatbmuly for certified products; that is, either a)
specified in an endorsed standard, b) adopted endorsed standard and specified either in an
appendix of the endorsed standard or in a documéstenced by the endorsed standard, or ¢)
specified in the list of Endorsed security funcéon

Enhanced backward secrecy

The assurance that previous output values of a DRAhot be determined (i.e., computed or
guessed with non-negligible probability) from therrent internal state, or from current or
future output values.

NOTE: The knowledge of the current state of a @IRNG (with no additional input or with
publicly known input) implies knowledge of the cemt and future output.

Enhanced forward secrecy

The assurance that subsequent (future) valuePD&ING cannot be determined (i.e., computed
or guessed with non-negligible probability) fronetburrent internal state, or from current or
previous output values.

NOTE: The enhanced forward secrecy may be enswreédeeding or refreshing the DRNG
internal state, which may be performed automatiaailinitiated on user demand.

Entropy

A measure of disorder, randomness or variabilitg iclosed system. The entropy of a random
variableX is a mathematical measure of the amount of inftiomajained by an observation of
X.

Entropy source

A component, device or event that generates ungedadé output values which, when captured
and processed in some way, vyields discrete valussally, a bit string) containing entropy
(Examples: electronic circuits, radioactive decRAM data of a PC, API functions, user
interactions). Entropy sources provide randomnass tfue and hybrid random number
generators.

External random numbers

18 September 2011 AIS 20/ AIS 31 page 10
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23

24

25

26

27

28

29

30

Random numbers used by an application (usually dbecatenation of output random
numbers).

Finite state machine

A mathematical model of a sequential machine thatprises a finite set of admissible states, a
finite set of admissible inputs (seed, and possalglitional input or publicly known input), a
finite set of admissible outputs, a mapping from slet of inputs and the sets of states to the set

of state transitions (i.e., state transition magpiand a mapping from the set of inputs and the
set of states to the set of outputs (i.e., outpattion).

Forward secrecy

The assurance that subsequent (future) values thendetermined (i.e., computed or guessed
with non-negligible probability) from current orguious output values.

Glass box

An idealized mechanism that accepts inputs andumes outputs. It is designed such that an
observer can see inside and determine exactly wigaing on. Contrast withlalack box

Human entropy source

An entropy source that includes a random human ooemt (Examples: key strokes, mouse
movement).

Hybrid RNG

An RNG that applies design elements from DRNGs RMBNGs; see alsbybrid DRNGand
hybrid PTRNG

Hybrid DRNG

A DRNG accepting external input values besides dhed; i.e., a hybrid DRNG uses an
additional entropy source. Identical output seqesndemand identical seeds and identical
external input values.

Hybrid PTRNG

A PTRNG with a (complex) post-processing algorithfine goal of (sometimes additional)
cryptographic post-processing with memory is taease the computational complexity of the
output sequence.

NOTE: A complex algorithmic post-processing aldumt may be viewed as an additional
security anchor for the case when the entropy pgyub bit is smaller than assumed.

Ideal RNG

A mathematical construct that generates independek uniformly distributed random
numbers. An ideal RNG can be described by a sequeihnmdependent identically distributed

3

External random numbers are outside the scoffasoflocument.
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31

32

33

34

35

36

37

38

39

random variablesx t1 T. that are uniformly distributed on a finite s&V n; our context,
typically W={0,4 orw={0,3".
Internal random numbers

For DRNGs: values of the output function; for PTRN@ndom numbers after post-processing.
The internal numbers are intended to be output upguest by a user.

Kerckhoffs’ box

An idealized cryptosystem where the design andiplielys are known to an adversary, but in
which there are secret keys and/or other privdtarimtion that is not known to an adversary.
A Kerckhoffs’ box lies between a black box and asgl box in terms of the knowledge of an
adversary.

Known-answer test

A method of testing the correctness of a determiinimechanism by checking whether for
given input, the mechanism outputs the correct\kroralue.

Noise alarm

Consequence of an application of an online test shggests (e.g., due to a failure of a
statistical test) that the quality of the generag@lom numbers is not sufficiently good.

Noise source

Special type of entropy source that consists ofcddeld hardware (e.g., an electronic circuit)
used by PTRNGs.

Non-physical true RNG

A true RNG whose entropy source is not dedicatedvare but e.g., provides system data
(RAM data or system time of a PC, output of APIdtions etc.) or human interaction (key
strokes, mouse movement, etc.).

Normal (Gaussian) distribution

Normal (Gaussian) distribution with mean  and vas&sy , is defined by

X -u?/2

X-m €

3 £x=_¥@

One-way function

P du.

A function with the property that it is easy to qmme the output for a given input but it is
computationally infeasible to find for a given outpan input, which maps to this output.
[ISO/IEC 11770-3].

Online test

18 September 2011 AIS 20/ AIS 31 page 12
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40

41

42

43

44

45

46

a7

A quality check of the generated random numberdewhi PTRNG is in operation; usually
realized by physical measurements, by a statistest, or by a test procedure that applies
several statistical tests.

Pure DRNG

A DRNG that does not accept any external input taftam the seed. Identical seed values
result in identical output sequences (random nug)ber

Physical true RNG (PTRNG)

A RNG where dedicated hardware serves as an ersmpyge.

NOTE: we use the short term “physical RNG” for pilogs true RNG as well because all
physical RNG are true RNG by definition. We use Higbreviation “PTRNG” instead of

“PRNG” to avoid confusion with pseudorandom germmat

Poisson distribution

Poisson distribution, wheré is the mean numbe&vehts per time interval
k

A _
P(X:k):ﬂe fork=0,1,2,

0 else

Post-processing (algorithm)

Transformation of raw random numbers that have ldeeived from the entropy source into the
internal random numbers

Pure PTRNG

A PTRNG without (complex) post-processing. A tdtilure of a pure PTRNG entropy source
typically results in constant output or periodicttpms if no post-processing algorithm is
implemented, or in outputs of a weak DRNG if a denmathematical (non-cryptographic)
post-processing algorithm is implemented.

P-value

The p-value quantifies the probability that the tedues are at least as extreme as the particular
value, which has just been observed (tail prokgbilf the null hypothesis is true. If this p-
value is smaller than a pre-defined bound, théstitaan rejects the null hypothesis.

NOTE: Alternatively, a particular significance léve may be defined before the sample is
drawn.

Random number generator (RNG)

A group of components or an algorithm that outpsgguences of discrete values (usually
represented as bit strings).

Random variable

18 September 2011 AIS 20/ AIS 31 page 13
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48

49

50

51

52

Mathematical construction that quantifies randoranésreal-valuedandom variable is a
function that assigns to each outcome in the saspeeN a value dR i.e., X :W® R.

More precisely, there exist-algebrass,, ofW ands oR for whick is@®,,Sg) -
measurable function, i.e., for each s, hols'(r)T s,,

Raw random number

Raw random numbers are derived at discrete pamtsnie from raw random signals that are
generated by the entropy source of a PTRNG or NEGRRaw random numbers have not been
post-processed. Raw random numbers assume disate&s.

NOTE: For particular types of TRNGs it may not beque, which discrete values (normally
bits or bit strings) are interpreted as the rawdcan numbers. The definition of the raw random
numbers may influence their distribution. Of coyree the chosen definition the raw random
numbers must fulfil the requirements that are dfkin the respective functionality class.

NOTE: For many types of physical RNGs raw randomrmipers are computed from analogue
signals that are generated by the entropy sourcgivating the notion of das (‘digitized
analogue signal’) random numbers. Examples are BSERiNat are based on noisy diodes or
oscillators. For PTRNGs that are based on ringllagmis on an FPGA, for instance, the term
‘analogue signal' is less adequate (cf. the fot to das random numbers).

Raw random number sequence

Sequence of discrete random values that have lgireeen derived by digitization from the
output of the entropy source; sequence of raw nanglombers.

Raw random signal

Randomly changing signal that is provided by amagyt source of a PTRNG, which is used to
generate raw random numbers.

NOTE: In physical experiments and for electronicuits raw random signals are often time-
continuous and assume values in continuous rakg@esa PTRNG on an FPGA that exploits a
ring oscillator the current state of the inverteaio with time jitter might be interpreted as a raw
random signal.

Realization (of a random variable)

Value assumed by a random variable.

Refreshing

Use of fresh entropy provided by an internal oreexal source of randomness in the state
transition function of a hybrid RNG (covers botseeding and seed-update).
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53

54

55

56

57

58

59

60

61

62

Reseeding

Re-initialization of the internal state of an RNypfcally, a DRNG), depending on external
input (new seed value), but disregarding the caivalue of the internal state.

Seed
Value used to initialize the internal state of d¥dR
Seeding procedure

Procedure for initialization, re-initialization amdfreshing of the internal state of a DRNG as
described in the guidance documentation.

Secret parameter
An input value (optional) to the RNG during initedtion.
Seed life

The period between the initialization of the intdretate of an RNG (typically, of a DRNG)
with a seed value until reseeding / seed-updakiagrtternal state with the next seed value.

Seed-update

Renewal of the internal state of an RNG (typicallyDRNG) by considering both the current
internal state and external input data.

Signal
Physical carrier of information.
State

A state is defined as an instantiation of a rangmmber generator or any part thereof with
respect to time and circumstance.

Stationary process

The sequence of random variab¥gsX,,... is called statyahor all positive integers and
t , and arbitrary (measurable) sets the followingadity holds

PriX,] A,..X] A} Pr{Xl, A.. X, A.
Stochastic model

A stochastic model is a mathematical descriptionrétevant properties) of a TRNG using
random variables, i.e., a model of the reality undertain conditions and limitations. A
stochastic model used for TRNG analysis shall stfpe estimation of the entropy of the raw
random numbers and finally of the internal randoombers. Moreover, it should allow to
understand the factors that may affect the entropy.
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63 Thermal noise
Inherent production of spurious electronic sign@so known as white noise) within an
electronic component (e.g., an operational amplificreversed biased diode, or a resiStoot
desirable for typical applications

64  Total breakdown of an entropy source

The entropy of the future raw random numbers edals

Note: Depending on the concrete RNG design, a tothkdown of the entropy source may
result in constant or short-period sequences ofreamgdom numbers.

65 Total failure test of a noise source

The total failure test of the random noise soureteats a total breakdowsf random noise
source.

66 True RNG

A device or mechanism for which the output valuepahd on some unpredictable source
(noise source, entropy source) that produces entrop

Note: The class of TRNGs splits into two subclagPdRNGs and NPTRNGS).
67  Uniform distribution

A random variable X that assumes values on a fgeteM is said to have uniform distribution
(or equivalently: X is uniformly distributed) on ¥ P{X =m}=|M |'1 foreachm i M

1.5. Symbols

68 In this document we use the following symbols:

A—}I— B One-way function of Ato B

PI{X :x} Probability that the random variable X assumesvéiae x

Pl{x} Probability of the value x (short notation if itéear which random variable
is concerned)

B(n, p) Binomial distribution with parametersandp

N(msz) Normal (Gaussian) distribution with megn and var&agpc

4 Typically, in electronic circuits a concentragftbrt is exerted to minimize these phenomena. Hewnethis

exact phenomenon can be taken advantage of inrtitigtion of random bit streams as it results imso
unpredictable behaviour and, therefore, may be aseth entropy source.
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Po(/)

A
X|Y
X

X

X

P

Poisson distribution, where is the mean of evpatdime interval

Addition in GF(2),
OA o= o0, 0A 1= 1, 1A 0= 1, A ® ¢

Concatenation of two stringsandY. The stringsX andY are either both bit
strings, or both byte strings.
Ceiling: the smallest integer greater than or etuA|
X =min{nT N|X £n}
Floor: the largest integer less than or equa,toX = ma>{nT N| ng X}

For a finite set X the notatioX|  denotes its caritinaf X is a string|X|

denotes its length.
Symmetric group over the set S, i.e., the groupllgfermutations oveg
with composition as group operation.

Symmetric semi-group over the set S, i.e., the ggop of all injective (not
necessarily surjective) mappings with composition as semi-group
operation.

The projection of a vectox=(x,, %, , %) onto the coordinates
W={il,i2, ’i\M} [ 1n.Thatis,p,(x) = (X, %, %) -

I
Set of natural numbers

Set of real numbers

Set of integers

{1,...n}
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2.

69

2.1

70

Basic Concepts

This chapter explains basic mathematical concdyatsdre applied in the security analysis of
RNGs. At first, we describe the concept of randossn&vhich is the “core” for any RNG. For
true random sequences, this refers to the entropscs; and for pseudo-random sequences, to
the seed. Probability theory describes and analyzeslomness by means of abstract
mathematical objects, modelling randomness by nandariables and random processes.
Statistics links these abstract mathematical modéts real-world RNGs by experiments.
These experiments may be used to estimate parartbigr describe the models or to test
hypotheses deduced from the models.

Randomness

Subsection 2.1.1 provides an intuitive notion afd@mness, which will be made precise in a
mathematical sense in section 2.3.

2.1.1. Concept of Randomness and Random Experiments

71

72

73

74

75

76

77

The core of any non-deterministic (true) random bemgenerator (TRNG) is the entropy
source that, loosely speaking, “generates” randssine

An experiment is calledinpredictable if the observable outcome of the experiment isgto
certain extent) unknown before it is conducted eAthe experiment has been performed, the
degree of uncertainty depends on the ability toeplss the outcome. In this document we
denote the outcome of an experimentraisdom if it is unpredictable, i.e., if it cannot be
predicted with certainty. Entropy quantifies the camt of unpredictability relative to the
observer.

Experiments are calleiidependentif the outcomes of previous experiments do nduarice
the outcome of the current experiment.

A random experiment is callathbiased if each admissible outcome has the same chance of
occurring.

Ideal random experiments are unpredictable, ind#genand unbiased (ideal randomness).
Ideal randomness excludes order and regularityhn dequence of outcomes of repeated
experiments unless these occur by chance. Any titmvittom these properties, i.e., dependency
or bias, makes the experiment less random.

The goal of any true RNG is clearly to generatalidandom numbers. However, real-world
RNGs can only achieve this goal approximately. Kag point of any RNG evaluation is to
verify to what extent the TOE guarantees fulfillrhehthis goal.

How can we determine to what extent an experimenamdom (bias, dependencies)? Assume
that an attacker knows the outcomes of many prevesyperiments. Why should he not be able
to guess future outcomes? It is meaningless toeaapout randomness on the basis of a single
run of an experiment or on the basis of a smalllmemof experiments. The “randomness” of an
experiment can only be observed asymptotically.t#tigtical test that applies a computable
function tests the hypothesis of whether the secpi@fi outcomes is “typical” in some sense.
Ideal random sequences belong to any (before teeredtion of the experiments) reasonably
defined “majority” of sequences with overwhelmingplpability, not showing any regularity
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patterns that can be detected by this statistésl tAny finite collection of statistical tests can

only check for finitely many types of regularity. datistical test may not contradict or it may
reject the randomness hypothesis under specifingssons, but this cannot serve as a proof
for the randomness of an arbitrary experiment. ifigsthe randomness of RNG output

sequences is computationally hard under “black dssumptions”. Hence, it is important to

understand the nature of the random source tdhratendomness of number generation.

2.1.2. Random number generators (RNGS)

78

Generally, an RNG consists of a non-deterministict [fentropy source) that generates non-
predictable digital data, and a deterministic phdt generates from this data the output
sequence of the RNG (random numbers). The nonrdetistic part of the RNG exploits a
physical entropy source or any other kind of nogsital entropy source to generate a raw
random number sequence, which is deterministigadigt-processed. Either the deterministic
part or the non-deterministic part may be omittgiding a pure PTRNG or a pure DRNG,
respectively.

PTRNG

79

80

81

The core of any physical RNG (PTRNG) is the entrepurce, which is used to generate the
raw random numbers. By exploiting an analogue signaligitization mechanism generates a
sequence of digital “raw” data (raw random numbeussually das-random numbers).
Additionally, the PTRNG may comprise a post-progegslgorithm that transforms the raw
data to internal random numbers.

Note that formally a missing post-processing athomi can be interpreted as the identity
mapping.

Physical entropy sources are based on physicabsuopic random processes. Measurements
of these processes result in digital random numiis@mples of time-discrete physical entropy
sources are:

Radioactive atomic disintegration: The number afayeevents (detected particles) per
time interval follows a Poisson distribution (dldue04], section 4.1).

Shot entropy of a diode: The shot entropy of alfsfalane temperature-limited diode
is non-deterministic. The number of electrons eedifrom the tube’s cathode during a
time interval follows a Poisson distribution (d2dR087], section 7-2).

The Poisson distribution implies that the intertotence waiting time between consecutive
events is exponentially distributed.

A large number of discrete random events like emitted electrons may be observed as
analogue entropy signal. Examples of analogue palysintropy sources are (cf. [BuLu08] for
examples):

Thermal resistive entropy: The voltage betweenstess varies randomly due to
vibration of atoms. Ideally, the thermal entropgrsil has the same energy in all

5

cf. to Chaitin’s definition of random strings aktartin-L6f tests in e.g. [Cal].
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82

frequency bands (so called “white entropy”). Sanglian ideally-amplified white
entropy signal generates a sequence of indepehignt

Diode breakdown entropy: The reverse current thradigdes varies randomly due to
tunnelling of electrons. The power of the entrojgnal is inversely proportional to the
frequency.

Free running oscillators generate digital signath &n edge-to-edge random analogue
time drift (jitter). Sampling a fast oscillator laylower frequency oscillator generates a
random bit signal. If the standard deviation of skew oscillator is considerably greater
than the fast period, the sampled bit sequencelmaxpected to be uncorrelated.

A typical goal of algorithmic post-processing may to extract entropy from the das-random
numbers sequence in order to increase the entmphifp e.g., to correct a given bias. Note that
increasing the entropy per bit demands data corsiores reducing the output rate. A
cryptographic post-processing algorithm may be ewas an additional security anchor.

NPTRNG

83

84

85

A non-physical true RNG (NPTRNG) uses external aignas entropy source to generate
random numbers for output.

Examples of such external entropy sources are:

Processes as disk /O operations and interruptse(gf Linux RNG /dev/random
[GUPRO6]).

System data as tick counter since system bootepsoand thread IDs, current local
time (cf. e.g., function CryptGenRandom of Micrfis®Vindows CE Enhanced
Cryptographic Provider 5.01.01603 [MSCEOQ6]).

Human interaction as mouse movement and key strgesPGP key generation
[PGP]).

The NPTRNG are based on the concept of randommselgla of information about processes
and their outcomes. If a huge amount of data frafierént sources are collected and mapped
onto a shorter sequence (e.g., by a hash functibe)putput value will appear random to an
observer who neither knows the source data ndlésta control them.

DRNG

86

87

A deterministic RNG (DRNG) generates random numlygte a deterministic algorithm and
starts with a randomly selected se€lde output sequence depends on the seed and paasibl
on additional external input values.

Examples:

Deterministic random bit generators based on hasfctibns, as described in
[1SO18031], Annex C.

NIST-recommended DRNG based on hash functionsomkldiphers [NIST800-90].
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88 A DRNG may be viewed as a finite automaton thakingxs input (seed and possibly also
additional external input). The DRNG updates theerimal state (possibly also considering
additional input) and generates output that dependsie current internal state and possibly on
additional input. The DRNG (or more generally, tteterministic part of an RNG) may gain
entropy from the seed and possibly from additiamalit during the operational work (reseeding
or refreshing). The seed and the additional inpay tve provided by different sources.

89 A DRNG may be based on the concept of complexigptatic randomness (cf. e.g. [Calu02]
for details). The sequences generated by a DRNG thbkall be computationally
indistinguishable from random sequences generatedinputational power.

Hybrid RNG

90 A hybrid RNG combines the design principles of teul deterministic RNGs, in particular, it
consists of an entropy source and a determinigtit fhe entropy source of a hybrid PTRNG
should provide at least as much entropy as theubumdom numbers might at most contain
Loosely speaking, this means that the entropy goorast generate at least so much entropy
that a perfect post-processing algorithm might getieean ideal output sequence. A hybrid
DRNG usually gets (considerably) less entropy frbma entropy source by reseeding (or
refreshing) than the length of its output measureits. Roughly speaking, the security of
hybrid PTRNGs relies on both the entropy of thepatitsequences and the computational
complexity, while the security of hybrid DRNGs as$ally relies on computational complexity.

2.2. Random Numbers in IT Security
2.2.1. Usage of Random Numbers in IT Security

91 Many security mechanisms need secrets, e.g., gusgybic keys or authentication data.
‘Unpredictable’ random numbers are ‘ideal’ secriets IT security applications. The use of
RNGs as a security mechanism results in requiresnent the random numbers, or more
specifically, on their generation.

92 In the terminology of the Common Criteria, RNGs gymbabilistic mechanisms. The
vulnerability analysis assesses the strength ahpetional or probabilistic mechanisms and
other mechanisms to ensure that they can withadaedt attacks (cf. [CEM], section B.2.1.3,
and chapter 5.7 of this document for details).

93 Guessing a secret by (i) selecting an admissilllgeyand (ii) checking whether it is correct, is
typical for direct attacks. To increase the sucgeebability, it may be reasonable to formulate
and analyze a stochastic model that considers hawsécret has been generated, i.e., the
probability distribution of the admissible valuesg., a set of passwords or a key space. The
ability to verify guesses depends on the availgbidif suitable reference data and on the
workload of the checking procedure. A cryptograpgtey may be guessed independent of the
TOE. If the attacker knows the cryptographic aldon and sufficiently many plain text / cipher
text pairs, the key can be searched for by meamsaskive parallel high-speed computations
without any cryptanalysis. Passwords may be foumdby trial and error, but the password
mechanism may limit the number of authenticatiagerapts in time (e.qg., if human user input is
assumed) and the total number of guesses (e.gedoyrement of the component FIA_AFL.1,
cf. [CCV31_2] for details). From the attacker’s pioof view, the situation is clearly much more

® Cf. paragraph 119 on page 28 for details.
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comfortable if he knows some reference string thas been calculated from the correct
password, which allows automatic search.

94 Table 1 describes the link between the maximum essc@robability of a single guess of a
cryptographic key, the number of security bits, #imel assumed attack potential according to
the CC.

Table 1: Attack potential, guessing probability aedurity bits

Component of the vulnerability analysis Success
Common Criteria prc_)bablllty of a Security bits
Version 3.1 single guess
Common Criteria Version 2.8
AVA_VANA{1, 2} ef10 3 40 security bits
(basic)
AVA_SOF.1,| AVA_VLA.2 AVA_VAN.3 e£3x0" 3 48 security bits
low (low) (enhanced basic
AVA_SOF.1,| AVA _VLA.3 AVA_VAN.4 e£5xX0% 3 64 security bits
medium (moderate) (moderate)
AVA_SOF.1,| AVA_VLA4 AVA_VAN.5 e£8x0 3 100 security bitg
high (high) (high)

95 As a general rule, the guessing probability forspasds must not exceed the upper bounds
given in Table 2, which depend on the assumedlkafiatential that is claimed in the security
target. If a probabilistic or permutational meclsamirelies on entry of data by a human user
(e.g., the choice of a password), the worst cageldlbe considered.

96 Table 2 describes the link between maximum guesgiobability e for passwords and the
assumed attack potential according to the CC.

Table 2: Attack potential and guessing passwords

Component of the vulnerability analysis Success Success
Common Criteria| Propability wﬁ%ogflotgtgg Recom-
Version 3.1 of auselr;gle after 3 failed mended

d attempts

Common Criteria Version 2.3

AVA_VAN.{1,2} e£10* e£3x10* | e£10°

(basic)
AVA_SOF.1,| AVA_VLA.2 AVA_VAN.3 e£10* e£3X0* | e£10°
low (low) (enhanced basic
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Component of the vulnerability analysis S Success
uccess o
.. .| probability probability Recom-
Common Criteria of a sinale with blocking mended
Version 3.1 9 after 3 failed
guess attempts
Common Criteria Version 2.3 P
AVA_VAN{12} | e£10* | e£3X10* | e£10°
(basic)
AVA_SOF.1,| AVA VLA3 AVA_VAN.4 e£10° e£3X0° | e£107
medium (moderate) (moderate)
AVA_SOF.1,| AVA VLA A4 AVA_VAN.5 e£10°® e£3x0° | e£108
high (high) (high)

2.2.2. Basic considerations for RNG types

97

98

99

100

101

For a reasonably designed RNG, the generated randombers should be mutually distinct if
the random numbers are sufficiently long.

R1: (statistical unconspiciousness) The applicatibrstatistical (standard) black box tests or
test suites does not distinguish the generatedorarmilimbers from realizations of uniformly
distributed independent random variables. A mora&lehging formulation of this requirement
says that statistical tests cannot distinguish eebwandom numbers and realizations of ideal
sequences. (Of course, ‘unfair’ tests, e.g., refgrthe actual seed value of a DRNG, have to be
excluded anyway.)

R2 (backward and forward security). It must (at least practically) be impossible &edmine
predecessors or successors of known sub-sequehoegpat random numbers. The guessing
probability shall be at most negligibly greaterrthvaithout the knowledge of the sub-sequence.

R3 (enhanced backward security)Even if an adversary knows the current intertetiesof the
RNG, the publicly known inputs (if any exist), atiek current and future random numbers, she
shall (at least practically) not be able to detemmpreceding random numbers; that is, she shall
be able to guess these random numbers only wigghgibly greater probability than without
this knowledge.

Note that the (weaker) backward security demands gihevious random numbers cannot be
determined from the current and future random numbEhe knowledge of current or future
output random numbers may be relevant for phy$G with internal memory (used for the
post-processing algorithm). For a pure DRNG, theriral state and all the publicly known
inputs determine the current and the future randombers.

R4 (enhanced forward security) Even if an adversary knows the internal stathhefRNG, all
the publicly known inputs and a sequence of prempdandom numbers, she shall (at least
practically) not be able to determine the next mamdumber; that is, she shall not be able to
guess this random number with non-negligibly greptebability than without this knowledge.
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Note that the (weaker) forward security requireat tfuture random numbers cannot be
determined from the current and previous outputesl Pure DRNG may fulfil forward secrecy
if the internal state cannot be determined fromkhewledge of the current and the previous
output values (random numbers). Forward secrecyerutite additional condition that the
current internal state is compromised (enhanceddiat security) cannot be achieved by pure
DRNGs. Enhanced forward security may be achievebyyid DRNGs if the internal state is
permanently reseeded (or is updated) with datanbatgenerated by a strong entropy source.

102 Requirement R1 is usually verified by a fixed skstatistical black box tests and possibly by
some additional statistical tests that are taildcethe concrete RNG. For true RNGs without a
history-dependent internal state, Requirement R&sentially equivalent to the combination of
Requirement R3 and Requirement R4.

103 Requirement R4 cannot be fulfilled by pure DRNG8s¢a the internal state clearly determines
all subsequent random numbers. Forward secrecyresgsufficient refreshing or reseeding of
the internal state.

104 Requirement R3 may be dropped for devices thaassamed to be secure against all kinds of
attacks that could discover (parts of) the intestale or for devices that are operated in a secure

environment. Requirement R4 may be relevant ifaitrot be excluded that an adversary has
unnoticed access to the device and is able tobsdbe internal state of the device.

2.2.3. Design Description of RNG
Overview
105 The description of the RNG design in general cosgi
(1) the entropy source of the non-deterministic part,
(2) the digitization of the raw random signal providsdthe entropy source,

(3) any post-processing of the raw random number segugroducing the internal random
numbers,

(4) the deterministic part of the RNG in terms of téernal state, the state transition
function/ , and the output functign

(5) the seeding, refreshing (or reseeding) mechanistheotfleterministic part of the RNG,
and

(6) any secrets and publicly known input of the detarstic part of the RNG (inclusively,
the generation process and how it is used).

Depending on the RNG design, some of these designeats come from external sources or
they may be trivial as discussed below.

PTRNG
106 The PTRNG design is in general described by

(1) the internal entropy source that generates raworargignals,
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(2) the digitization mechanism of the raw random sigimab the raw random number
sequence,

(3) any post-processing of the raw random number segugenerating the internal random
numbers$, secrets and publicly known values (if there arg) aand

(4) the online test(s) (applied to the raw random nusbe the internal random numbers), a
tot test (shall detect a total failure of the epyrsource), and a start-up test.

107 The post-processing algorithm may comprise a cgrpgghic one-way function to prevent the
analysis of the raw random number sequence onasis bf knowledge of the RNG output. A

hybrid PTRNG may contain a DRNG for post-processing
NPTRNG
108 In general the design of a NPTRNG is described by

(1) the external entropy sources continuously providligital raw random signals as input
to the NPTRNG,

(2) any secrets and publicly known input values (intigdhe generation process and how
it is used) if used by the NPTRNG,

(3) the pre-processing of the raw random number seguamt publicly known input,

(4) the deterministic post-processing of the pre-preegsnput in terms of the internal state,
the state transition functioh , and the output fiamcy’ , and

(5) the self-test, if implemented.

109 Usually the entropy source of a NPTRNG provides-émiropy sequences. If directly used for
output these sequences must be compressed. Hoviewegny designs these sequences are
used to update the internal state of a DRNG. Ugutde core of the post-processing algorithm
is a hash function. For a non-physical true RN@, dkerage entropy of the raw data must at
least equal the output length of the internal ramdwmbers in bits (cf. paragraph 111 for

details on hybrid RNG).
DRNG
110 In general the design of a DRNG is described by
the seeding procedure that generates the firsniaitetate of the DRNG,
the generation of the output and the next intestak of the DRNG, and

the control system for DRNG instantiation, de-ingigtion, and limitation for the
amount of random numbers produced after seeding.

The seeding procedure may distinguish between

" Formally, a missing post-processing may be intgat as the identity mapping.
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the instantiation of the DRNG generating the ihitidernal state using an entropy input
string, and

the reseeding / refreshing of the DRNG generatimg riext internal state from the
current internal state and (possibly) an extemmaiii string.

111 We describe the deterministic part of an RNG by -tugde (S,I,R,/,), p,) ., more

112

113

precisely:
Sset of internal states
| input alphabet

R output alphabet

S, initial internal state (derived from the seed)

/ :S” | ® S (state transition functionk,,, :=/ (S,,i,) (1)

¥ :S" | ® R (output function),r, ==y (s,,i,) (2

p, probability distribution of the initial interhatates, that is derived from the séed

For the description of multistep-behaviour of théuple we derive the extended transition
¥

function/ * and extended output functign* over S™ I*, |* = I X, where forsl S and
k=1

¥
i*=(@, ,i)Tl*andR*= R hold

J*: S F® S,/*(ST) F/C ¢/ ((si)i) ’ik-l)’ik)(g)

y*S F® R,
Yy st =((syx (s i) »vy( Yy ( (si)i) i i) (@)

In some cases one may require tpator y * are one-way functions (in a sense discussed

below), i.e. that it is easy to compute the outfmuta given input but it is computationally
infeasible to find for a given output an input, alinimaps to this output. Fgr directly follows

that |S' I| shall be sufficiently large preventing exhaustearch of appropriatés¢i ¥ such
that/ (s¢i}=s for a givenst, st /(s 1). For smallR the setR* will contain short

d Sihi |

In many cases, the seed equals the first intetatd.s
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114

115

116

117

118

output sequences allowing to guess an approp(iste*) such thaty *(s¢#) =r* for a

givenr*, r*] /(s ) . If we require “the extended output functign* being a one-
dsk ¢

way function” it requires more precisely the oneywigature for sufficiently long output

sequenceg *, i.e. |r*| >| , wherel is big enough thatR|I prevents exhaustive search of

(sti*) .

The 6-tuple is a semiformdl description of the deterministic part of the RNIB.is not
necessarily formal, because it may not necessaltiyv formal proofs as demanded by formal
description languag¥'s For DRNGs, ‘secrets’ mentioned above may be viee® part of the
seed or the internal state.

The 6-tuple may define a®ALY machine, where the initial (starting) internaksts a random
value derived from a random variable with distribntp, (this is an extension of the definition
e.g., in [HDCMOQ0)).

Apart from the seed, a DRNG may get additional imgmta while it is in operation. Without
loss of generality, we may assume that an exteeratopy source generates data

a,a,,..1 A=A E{0}, where A, denotes a finite set of admissible inpaltes, and the
value a, =0 is logically equivalent to “no input from amxternal entropy source in step .
Analogously, we assume that,b,,..I B:=B, E{0} denotes a sequengebtitly known

data, whereB, denotes a finite set of admissiblaitinmlues, andb, =0 is logically

equivalent to “no publicly known external input 8tep n ”. Note: the publicly known input
does not provide any entropy to the RNG, but mégcathe internal state and the output of the

RNG. In particular, we haves,, =/ (s, .a,,b,) and :=y(s,a,b) . We define
i,==(a,b)T 1 :=A" Bforn31,wherei, istheinputtp and in Step

If a, =0 forall n3 1, we may simplify the model by “negléag” the setA , i.e., we may set

| =B. Analogously, we may selt = A if no publicly known wa$ are fed into the DRNG
during its life cycle.

A pure DRNG runs without any external input afteeding, i.e.i, =(0,0) foralh3 1 . The
state function and the output function of theEAYy machine may be simplified to

(S, R/ ¢ p)with

JGS® S, 5,15/ (s) andy CS® R 1r,:=y(s,) . (5)

10 «

semiformal” means “expressed in a restricted aynianguage with defined semantics” (cf. CC part 1

paragraph 81).
1 “tormal” means expressed in a restricted syntaglmge with defined semantics based on well-estzddi
mathematical concepts (cf. CC part 1 paragraph 51).
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Hybrid RNG

119 Whether a hybrid RNG is categorized as a hybrid BR{Mvhich means that its security
essentially is based on computational complexityda hybrid PTRNG (which means that its
primary security anchor is based on entropy) isahetiys clear. It may be difficult or even not
clear in concrete cases. Roughly speaking, theifizetion essentially depends on the relation
between the entropy of the seed-update material ghthe entropy of the reseeding material),

and the maximum entropy the internal random numbeag attain, namelygz|R| , which is
provided by ideal RNGs. Let us assume the following

(1) The sequence of additional inpusg,a,, is stationarynfore precisely, the
sequencea, ,a,, is assumed to be generated by statioaadpm variables
A.A,, )andhasMin-entroph =H(a,, ,a,,,) ;

(2) Within k cycles, the state transition function atanslightly reduces the entropy
of the internal state (If the mapping:S"{i}®S is a perriataover S , for

any fixed iT | The entropy of the internal state is meduced, even if an
adversary knows all external input values.); and

(3) y is surjective. Ith3 klg,|R - e , for a small constaat |,

the RNG may behave like ehybrid PTRNG since the non-deterministic part of the RNG
provides at least almost as much entropy as thgubsequence may have in the best case.

Note, however, that this does not prove that thpy of the output is indeed close kdg2|F§

or equivalently, the internal random numbers ateldast almost) uniformly distributed and
independent. This clearly depends on the concrii@,Re., on the state transition function and
the output function, and demands a solid prootdntrast, ifh + H(S) <<k|gz|R| , the non-

deterministic RNG part does not provide sufficientropy to ensure that the output sequence
can be truly random: The RNG behaves bglaid DRNG.

2.3.  Mathematical Background
2.3.1. Random variables

120 An experiment is any physically or mentally conceivable undergkthat results in a
measurable outcortfe Thesample spacds the setW of possible outcomes of an experiment.
Unless otherwise stated, in this document we asshensample space as finite set. Sheple
sizeof an experiment is the number of possible outcoaighe experiment (= cardinality of the
sample space). Aaventis a subset ofA . Arobability measure on afinite sample spac&\
is a function Pr from the power set &% (= set obsets of W ) into the interva]O]l]
satisfying

P{W =1 (6)

12 e follow the terminology in [HDCM], chapter 7 $direte Probability.
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121

122

123

124

125

126

127

n

P A = ) P A} if the event{A,A,, A} are mutually disjoint (7)

k=1 k=1
More generally, @robability spaceis a triple(W, S, P) , where
W is a setifot necessarily finije

S is a s -algebra oveM  (By definitonfWl S an&l S, ami- AT S
¥
wheneverAl S . Moreover, AT S for any countable sequefged,, 1 S )

i=1

P a probability measure on the @ -algelsa (By dédinjP:S® [01] is a
function that assigns to eacd S some real numbevelset O and 1. In particular,
P(W)=1, and for mutually disjoint events A,A,, 1S , we have

P( A)= P(A))

i=1 i=1
For countablé/\  (finite or infinite), we always asgithatS equals the power set.

From a mathematical point of view, random variable X is a function X :W® V that
assigns to each elementi W an observable valud/ . pre@sely, some fixeds -
algebraS' is assigned td , and the mappiig\W ® W is madlsuwith regard to the
-algebras an&' . A random variable is denatsdreteif V is countable.

In the following, we interpret random numbersr,,... aslizations of random variables

R,R,,.... Dealing with random variables allows the use mibgabilities in place of relative
frequencies (i.e., in place of empirical probaig). For ‘real-world’ RNGs, the distribution of
the underlying random variableR,R,,... is usually unknowepending on the concrete

design, one may determine a family of distributioims which the true (but unknown)
distribution belongs.

In the following, we mainly deal with countable (stly finite) sets V. We skip measurability
problems and refer the interested reader to tlewaat literature.

By definition, random variablesX;, X,,... are said to ibdependent if for any positive
integer kK and for any sequencéi,...,AkT S the equality
holds. For discrete random variabl¥s, X,,...  , this céomlit

simplifies to P{ X=% »X= )&} = F{ X = 3§>< >4? Xet :g} for any sequence
Xy X 1 V.

A random variableX that assumes values in a fset&/ is said to beniformly distributed

(or equivalently: unbiased, equidistributed) iaisumes alvT V  with the same probability.
Otherwise X is said to béiased An ideal RNG is characterized by a sequence of
independent, uniformly distributed random variables
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128 Random variables X, Xy, are called  stationary if

P{XT A X A HX. A ,X, A#foranypositive integer& ard and
for any sequenceA , AKT S . For discrete random variables, dondition simplifies to

P{X,=% . X=x%x}=R X.=% , %, = gforall x,..x1 V"

129 Example 1 Interpret the outcomes &f subsequent tosses of a coin as a realizationnabra
variablesT,, T,, ,T . Since a coin has no memory, we maynasshbat the random variables

T.T,, ,Ty are independent and identically distributed. Tdistribution is known as the
BERNOULLI distribution and denoted byB(L p) , where without losté generality,
Pr{Tj = Head}: p and Pr{Tj :Tail}zl- p . If the coin is fair then the random variable

T,,T,, ,T, are unbiased, i.e. for al£ jEN holdp=05 . In the ‘rearid’ for a
particular coin, its parametep iIs unknown, but t@nestimated by experiments. Let the

min

outcome of thek-th coin toss be denoted 4s  and ! . For any
€>0,
h
P |- pl<e ®1lasn® ¥ (weaklaw of large numbers). (8)
n

This allows a precise estimate of the unknown podita p.

130 The real-valued functionf : R® R is density function if f(x)3 O for all xI R and

¥
§ f (XY dx =1. For acontinuousreal-valued random variablX  (i.e{:W® R , wh&e
denotes the set of real numbers), there exists asitge function f such that
b
Pla<X<B = f(x)dx forall a<b.
a

131 Themean(expected valuee(X) of a discrete real-valued randanable X is given by

E(X)= kP{X =k}. (9)

k

For a continuous random variab}e  with density fiamc f (X) the mean equals

¥
E(X)= . xf (X dx. (8)
132 If a random variableX assumes binary vectois,: W® {0,1}n , however, no meaningful
definition for the mean is evident. By identifyiige binary vectordx, ,,X,.,, ,X,) With
n-1
b(X,. 1, X, 20 %)= X.2%, definition (7) could principally be applied. Hovez, any
k=0

meaningful interpretation of the “expected valuelgfX)” should take into account that the
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133

134

135

136

137

coordinates contribute differently to this sum. &mfly speaking, statistics should always
considerV (cf. [SaHe06], section 1.4, for details).

The variance Var(X) of a real-valued random variableX is defined by
Var(X):=E((E(X) - X)?. Itsstandard deviationis given bys ::,/Var(X) :

Given a probability spad®V, S, P) ,stochastic processith state spac&\ is a collection of
real-valued random variableX (t,) , wherel W ahd T (“time’®., in short,
{X,:t1 T}.if T1 Dz with D>0, the stochastic process is called (t)discrete.

A stochastic process is callsthtionary if

P(x,TAX A % 2 KX A A X A (10)
for all k-tuples (t,,t,, ,t.)1 T* ,#>0 and all (measurable) subsets of #. If the
random variablesz are discrete (9) simplifies to

P(thzrl,th:rz, ,th:rk):P(xtlﬂ :'i1>(t2+f =, ’thf :'L)- (11)

with real number$ $ .

A stochastic process is  stationary in wide-sense if
E(X) = E(X.) E(X X,) = H X, X)) (12)
forall t,t+#1 T .

A stationary stochastic processeigiodic if statistical properties can be deduced fromnglsi
sufficiently long realization of this stochasticopess. More precisely, assume that for the

(measurable) functiorf (th’ X, )gk) , the mean over the timetexi$ien

T

f_(th,X[z, ')&):“mi-l— T f(xlﬂ’)gzﬂ! ,)t(kﬁ)d'andP(T:E(f))

T®¥ 2

Wheretl,tz, 1tk 1t1+r lt2+[ 1 ’tk -lf T T '

1 (13)

2.3.2. Entropy and Guess Work

138

139

Let X be arandom variable OVW={W1,W2,...,W} p(w) 2 p(ws,) 2 .5 p(w,) .Wewant

n

to estimate the effort to guess the outcome ofxgerment that is viewed as a realization of X.
The optimal strategy is to guess the valugsit, , ... timtiloutcome is found. THework-

factor w, (X) denotes the minimum number of guesses to getdbalt with probability
/,0</ <1, if the optimal strategy is applied. That is,

w, (X) =min K k p(x)s/ . (14)

i=1

For / =05 the work factor of the optimal strategy mehtsfollowing inequality [Plia99]
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140

141

142

143

———— EW,(X)£ @-|p T)xn 15
2ma{ P ) (X)E @- [P Tx (15)

ifin

with P =(p(w ), p(w,), ,p(w)) and T=(/n,..1/n) (uniform distribution). In
particular,

1 -
|p- = R(A- % A %FW LU (16)
Note that|p- T is invariant o ,,i,, ,i,)

The guess work is the expected number of guesses dptimal strategy is applied
W(X)= ip(x) (17)
i=1

For the most general case, the following inequalityvides tight bounds for the guess work

Slp-de T2 woxe e g &

Chapter 5.1 provides an example of calculation gwesrk for binary vectors consisting of
independent but biased bits.

The logarithm of the denominator (apart from fa@pin the left side of the inequation (15) is
called Min-entropy

H o (X) = - log, max{ p (x } (19)

The Min-entropy represents a special case of thee rgeneral notion of BNyl entropy H ,
where
()= log,  (P{X =u}) o£a<¥ (20)

i=1

lim H,(X) = - log,(max{Pr(X= u)})= Hy(X) (21)

For special cases af, the RENYI entropy yields the inequations

Hmin<H2£Hl’Hmin<H2<2Hmin (22)
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Figure 1: Min-entropy, collision-entropy and Shansemtropy for binary-valued random
variables

144 The well-known SANNON entropy may be interpreted as the special ease€l n paiticular,
L'Hopital’s rule yields

H(X)=-  Pr(X= w)log, (Pr(X= ) (23)

i=1

145 Another important special case of theNRI entropy is the collision entropid, . Let and
X ¢ be two random independent and identically-distedwariables with values in a finite set
W. The collision probability isP{ X = X} = (F{‘ X:}x)2 , and the collisieentropy
xic
equals
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146

2.3.3.

147

148

2
Hy(X)=-log, (P{X= %) . (24)
xiC
Let p denote the distribution of the random vaeabl Then[CFPZ09] states
2
3 1+ 4” P- u”

(P{x=%) W (25)

xic

A memoryless binary-valued stationary random souwrae be described by independent
identically B(1, p) -distributed random variables,, X,,...,X . The smiwvork forn random

n

bits, or equivalently for the random vector may be estimated by theiSINON
entropy [Maur92]
%é&) (! . (26)

More generally, for an ergodic stationary binarjwdam source, the relation between the
guesswork and the length of a sequence tends astjoaiy to the SIANNON entropy [Maur92]

lim 12922 (%) _ (%) for 0<a <1. 27)
n

n®¥

We point out that these assumptions cover nedrpghgkical RNGs.
Random mappings

Let , be a random variable that assumes value¥ in {f"A® A}, where A is a finite
domain. Consider the sequentg, := F(W)(t,) with t, =t for sometT A andn3 0 . In

terms of the functional graph d¥ (1), this sequence describes a path that ends inle. dywe

functional graphs consist of components, each athvbonsists of one cycle that is connected
with several trees (O trees is possible). We addsesne well-known results on statistics of
random mappings and permutations.

Table 3 collects some results on random mappirgsatte chosen uniformly from , 1.e.,
the setof alln” mapping&® A |A=n  (cf. [Flod89] for matetails).

Table 3: Statistics of random mappings

Expected value as

Characteristic ne ¥ Definition and comments
Number of llo n A component consists of one cycle and several trees
components 2 9 connected to this cycle.
Component size 2n/3
Largest
component »0.778n
Number of
eyclic nodes Jpni2 Jpni2 »1,253314/ «
Cycl length
(,);(; © eng W The number of edges in the cycle is called theegycl
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Characteristic

Expected value as

Definition and comments

points

foa S €XPE1+1y)

ne® ¥
length oft , denoted?(t) +/pn/8 » 0,62665% r
I'\é'ﬁ;‘{?“m oyele 078248/n
The number of edges in the path to the cycle iedgal
Tail length (/ ) [on 18 the tail length of t , denoted /(t)
Jpni8 » 0,626657/ .
I'\é';‘a‘;?“m @l 173746/n
Rho length m r(t) =/(t) + n(t), number of steps until a node [on
n
(r) P the path repeats/pn/2 » 1,253314/ r
I'\é'ﬁ;{?“m Mo 24119/n
Tree size n/3 Tree size of a node means the size of the maximal
tree (rooted to the cycle) containing this ndde
Largest tree » 0.48n
Number of a Number of nodes  without predecessor,
terminal nodes en e'n»0,36787N.
Number of a- &M | f (M) as number of nodes that have a predecessor,
image points (1- e')m» 0,63212M.
Number of k-th L
iterate  image r,=0, ‘f k(A)‘ as number of nodes after applicationfof

Predecessor siz

e Jpn/8

The predecessor size of the ndde is the sizeeq
tree rooted at nod¢  or equivalent the numbe

f th
r of

iterated pre-images df

n! permutations ofA, |4 =n , (cf. [Golo64] for more details).

Table 4: Statistics of random permutations

149 Table 4 collects some results on random mappiregsatte chosen uniformly from the set of all

Expected value as L
n® ¥ Distribution asn ® ¥
Number w, of cycle of the permutatipn
(k - Inn)?
Number of Inn+C+o(1) exp - o
cycles C=0.57721566 | P{w, =K = 1+0(1)
J2pInn
normal distribution(Inn,Inn) .
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2.4.

150

Expected value as

ne ¥ Distribution asn ® ¥

Number w.

nl

of cycle of length |

__n _ o _expl- 1/1)

Cycle length nn+C+ o) P{Wm = k} =

PoissoNdistribution with parametef =1/1
Length of the
largest cycle » 0.6243
Expected cycle N+l Probability that a random elemert lies on a cycle
length of 4 —_— . : 1

of sizek ,kEn ,isP(m(X)=k)==
random element 2 (W( ) ) n

Stochastics and Statistical Analysis of Physical RBk

Stochastics and statistical methods are very impotbols for the analysis of physical RNGs.
In this section we address stochastic models atidtital tests.

2.4.1. Stochastic model

151

152

153

154

A principal task when analyzing physical RNGs igdentify and analyze those characteristics
of a system or a process that have (significanpaich on the distribution of random numbers.
Other features that are considered to be of subat@i meaning are often neglected. In
particular, precise physical models of ‘real-wonbdiysical RNGs (typically based on electronic
circuits) usually cannot easily be formulated arerat analyzed.

A stochastic model of a physical RNG shall quantifg distribution of the random numbers.
Note, however, that a stochastic model usuallygsificantly less complicated than a physical
model of the RNG. This advantage of stochastic nsogelinked with loss of information. In
fact, unlike a precise physical model, a stochastdel does not provide the distribution of the
random numbers as a function of the characteristicthe components of the entropy source.
Ideally, a stochastic model provides a class obabdity distributions that contains the true but
unknown distribution of the internal random numb@vkich, at least in a strict sense, depends
on the particular device). The stochastic modelikhat least provide a class of distributions
that contains the distribution of the das-randommbers or of ‘auxiliary’ random variables if
this allows to establish a lower entropy bound foe internal random numbers. These
distribution classes usually depend on one or séyarameters that may be estimated on the
basis of sampled random numbers.

Of course, the stochastic model should be checlathst empirical data and, if necessary, be
corrected and adjusted. Of course, it is advisbfermulate the model as simple as possible to
reach the specified goal.

As pointed out above, stochastic models may conside

the raw random number sequence,
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155

156

157

158

159

160

‘auxiliary’ random variables (cf. [KiSc08], for itence), and
the internal random numbers.

Stochastic models of the raw random number sequenoé auxiliary random variables focus
on the entropy source and the digitization of italague raw random signal in order

to estimate the entropy of the raw random numbguesece, and
to assess the factors that may affect the qudiitiyeoraw random number sequence.

Stochastic models of internal random numbers autditly consider the algorithmic post-
processing of the digital entropy signal

to assess the effect of the post-processing, aathfi
to verify the quality of the RNG output.

The digitized entropy signal may be used direclyrdernal random numbers or as input for a
non-trivial post-processing algorithm. Of courdee first case may be interpreted as a trivial
post-processing algorithm (identity mapping). Thealg of non-trivial post-processing
algorithms may be to increase the average entrepyip (which demands data compression),
simply to smear simple dependencies of das-randambars, or to obtain a further security
anchor if the post-processing algorithm consiststiing cryptographic primitives.

The digitized entropy signal (or auxiliary randoariables or internal random numbers) may be
described by a (time-discrete or time-continuotisglgastic process -~ , where P(ﬁ)

denotes the distribution of the sample functdit, w)  hiok depends on a set pf 7, P

The setP  specifies the admissible parameter setstaall contain the true parameter vajzie
under operational conditions. As mentioned abole,dstimate of the entropy, or at least of

lower entropy bounds, grounds on these distribetilalﬁﬁ) . The parameter sgt  may depend

on factors such as the concrete entropy soaragperational conditions of the RNG and
aging® over the life-timet of the RNG. Formally, the parameter §&t  depends, orandt,
i.e. p(e o t) . Usually, these dependencies are difficujuantify. However, it is essential that

the parameter sep remains in the specified Bet therwise, the stochastic model and
consequently, the derived entropy bounds, are ngelovalid (at least they are no longer
reliable). The online test shall detect if the tpsameterd leaves the ‘agreeable’ part of the
parameter set, which may result in insufficienrepy.

The influence ong clearly has impact on the envirental protection of the entropy source
(e.g., by stabilization of the power supply, fiteand sensors) and the assessment of the
vulnerability by aimed manipulation attacks on @perational condition of the entropy source.

The following examples discuss stochastic modetstlieoretical examples. Practical (more
complicated) examples of stochastic models cabed, e.g., in [KiSc08] and [BuLu08].

13

Aging is a long-time process and does not preasstimption of stationarity of the entropy sourcehiorter

time frames.
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Example 3: Urn model of ideal RNG

161

162

163

164

165

Example 3 considers an urn modéh) , with  distingaiigd balls (numbered from 1 to ).
Drawing a ball provides a random number betweendLra. The outcome is recorded and the
ball is put back into the urn. (n)  models an ideal RM@t generates independent and

uniformly distributed random numbers in the rarﬂe

One may compare a ‘real-world’ RNG (true or det@istic), that is, its output sequences, with
the statistical properties of (n) . This may give adidator for similarities and differences

with ideal RNGs. The evaluator may count frequesaiensider consecutive output values, etc.
to compare the (empirical) distribution of the ramdnumbers with the hypothesis of uniform
distribution.

We note that one may also consider another urn mod@) to describe characteristics of an
ideal RNG. The model (n) consists of numbered urtss\hich balls are randomly put
with regard to uniform distribution. (n)  considers thetput frequencies for an ideal RNG,
but unlike (n) , it ignores the order of the outcomes[(MeOV97]).

After k balls have been drawn from an urn with ~ ®4&llrn model (n) ), the probability for
a collision (i.e., at least one ball has been setkat least twice) is

(n-Y(n-2)> >(n-k+1

nk-l

P(nk) =1-

(28)

Q

For large n andk , SRLNG'S formula yields nl=+/2pn™"? exp - n+§ with
n

0<Q<1. Consequently,

P(nk)»1- d-“o°k*%og ™, (29)

If k=O(/n) andn® ¥ , then

P(nk)® & exp- k(k-14) O(n1’2)>> 1 exp L (30)
2n 2n

For largen , the expected numb@y  of drawings timilfirst collision is approximately

E(n) = Vpn/2. (31)

Now consider the case where  balls in an urn atnduishable, but the balls may be drawn
with different probabilities. By p. , we denote theopability that balli is drawn, and

P=(p, PR, Q). whilei,i,i,  denotes the labels of the drawn ballse Thnditional
probability for a collision in step k under the dition that no collision has occurred so far

18 September 2011 AIS 20/ AIS 31 page 38



A proposal for: Functionality classes for randonminer generators

k-1

clearly equals p, - For the given sequenge, i ,, , the ibityafor a collision in most
j=1

k drawings is

R - (32)

J

G(k,b):1-8 I

=1 j=1

|

Obviously, oN £I><max{ pj} £l / 1/ ma: p} , and for k , 1< 1/ max{pj} we
i=1 ! j=1..n j=1,.4 j=1,..n

obtain (cf. formula (18) for the definition of Miertropy H ., )

GKkPEP kK 1/,-@?3({ 9} = P( k, Zlmn(P ) (33)

Note that2"= (™ s a lower bound of the ¥s-guess-fagigr () for distribution p .

Example 4: Radioactive decay digitized by a Geigarounter [Neue04]

166

167

168

In Example 4 we consider a stochastic model ofRM&NG that consists of a random vector
(x,z,hn). The random variablex  models the behaviouthef entropy whilez and?

correspond to the das-random numbers and the atterndom numbers, respectively.

The entropy source is a radioactive source thatsepdrticles that are detected by a Geiger
counter. The random variable  is described by Hrelom variable@”i =123 } that
model the intermediate times between consecutiymilises. For a reasonable lifetime of the
RNG" we may assume that the random variables are emdemt and identically
exponentially distributed witrP{'I'i <t} =1-e™ ,whert/g is the eoteel intermediate
time between the impulses. Under this assumpti@number of impulsedl  within any fixed
/e’

k!

time interval of lengtit  is@ssoNdistributed with parametet =gt P{N=§ =

Under the assumption that the detection mecharssable to measure the intermediate times
exactly, the random variable{é’i |i =123 } describe the medsuatermediate times. The

following Lemma says that the measured intermediates can be used to generate random
numbers

R =T, (T, +Ty.) (30)
that are uniformly distributed on the unit interj&ll) .

* The mean number of impulses decreases over tiependling on the half-life of the radioactive soueg.,
the half-life of Caesium-137 is 30.23 years.
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170

171

Lemma L Let X andY be identically exponentially distribditeandom variables with

parameterg >0 . Theb := % is uniformly distributed (1)

However, a ‘real-world’ detection mechanism is abtle to measure the intermediate times
between two impulses of the Geiger counter exabtly,only in multiples of a positive constant
( = length of a clock cycle; without loss of gerityawe assume that this constant equals 1

within this example). If multiple impulses occurthiih one clock cycle, they are only counted
once. The random variablg  is given by @ad30N process{Nt}tao which considers the

number of measured impulses until time , id,, PasssonNdistributed with/t .

The random variableﬁ |i =123 } quantify the time (expressedultiples of the clock

length) when the *| the 2° ... impulse is observed. More precisel)‘é0 =0 and

él = min{k‘ N, 3 Ng . +1k1 N} for i31. The random variables{ﬂi =123 }
describe the random intermediate times betweenecotise impulses. The random variables

A

T

are independent and identically distributed. Mqmecisely, 'I:, -1 is geometrically

distributed with parametet- €7 . IF, anB, denote thmelative distribution function

of random variablesX  an , the teff, - F,|, = suf{|F, &)} F,(x}}  quantfies the
A R

distance of their distributions (cf. formula (1boxe).

Lemma 2 Assume thatX(- 1 an®&' (-1 are independent geometric@lyilslited random

variables with parameteg¢=1- € 7 , while stands for a amily distributed random
X 05

variable, the unit intervaJO, . Thdd ¢=———— satisfies thegunation
a01) X¢+Y¢ 1 heg
1 q q
Etanh > E|FR, - Ry ,E & exp el (34).

Note that the RNG post-processing algorithm may thle property of the detection mechanism
into account. Instead of following (30), one maicuatate

= (f2i - 05)/ (f2i +f2i+1 - 1. (35)

Lemma 2 allows to estimate the deviationl%f fromn#ormly distributed random variable
on the unit interval.

Example 5: Random mapping model for a pure DRNG

172

A pure DRNG(S,R,/ (¥ ( p,) may be modelled as follows:

The state transition functigrt: S® S is uniformly selecfemim some seF  (during
the design of the DRNG, this selection is fixeddbrinstantiations of the TOE).
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173

174

175

The output functiony (: S® R is uniformly selected from sosetY (during the
design of the DRNG, this selection is fixed foriaBitantiations of the TOE).

The initial states{ is viewed as a realization ofaadom variableS§ that i, -
distributed on the seb . This random variable dbssrthe instantiation of the DRNG
during the operational usage of the TOE. The ingttate S{ may depend on several

non-deterministic data, which may be randomly detk@t different time instants and
different conditions, e.g., on a cryptographic kiegt is selected during personalization
of the TOE, on a binary seed string selected wherdevice is powered on, on a binary
string that is regularly refreshed, etc.

The choice of F andY  has significant impact on proge of the DRNG. The next
paragraphs address some characteristic§ if  Yor taicormnjectivé® (not necessarily
surjectivé®) mappings or bijectivé mappings (i.e., permutations). In the following Wriefly
speak of “mappings” in the first case and of “petations” in the second case.

Assume thaf = SE g , i.e., that the state transition fumcti is a permutation that is

selected uniformly from all permutations ov@r . Hhate transition function saves the entropy
of the internal state, sincg(S)= S  for eagHF . FoF SH(S , éhropy may be

reduced while the DRNG is operated, sinic€S) | S . Inipaler, one may expect that the
number of admissible internal states has been eeﬂm\/m (cf. expected number of cycle

nodes) after,/pn/2 steps (cf. Table 3; expected rhottgndf the initial internal state has
entropylg n , then the cycle states will have entropgtmut (Ign)/2 .

If £ andy are permutations, the period of the out@lies (internal random numbers) equals
the length of the cycle of y that contains the ahisitate. If both/ angr  consist of only

one cycle, the period of the output value:1;$ areigss ofp, . Note that if this DRNG is
reseeded (withp, = uniform distribution 8n ) befoecke output of a random number for

large |9 andn=O(\/ﬁ) , the probability for a collision 'Esxr(- n? /2|S) f.(birthday
paradox in [MeOV97])).

2.4.2. Overview of Statistical Tests

176

Statistical testing links a stochastic model to thal-world object of investigation. Without
verification by statistical tests, the stochastimdel provides only assumptions on the behaviour
of a real-world IT system, but no evidence (unldesdesign is very simple (as repeated coin
tossing) and has been understood very well frohearetical point of view). In particular, this
is the case for the analysis of a (physical) RN@tiSics with empirical data are necessary to
develop, confirm, and adjust a stochastic modetl finally to understand the source of
randomness that is exploited by the RNG and thehasiic properties of the random numbers.

15f

16 f

A® B isinjective if| f “*(b) =1 forall/ 0

A® B is surjective if for eacb] B, there exists a@l A with b= f(a).
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177

178

179

180

181

Statistical analysis distinguishes between exptagatariables and response variables of an
experimentResponse variablegjuantify the outcome of an experiment. For RN@sponse
variables may be the random entropy signal, théizkg entropy signal, or internal random
numbers. Explanatory variables describe the conditions under which the experimient
conducted. For a PTRNG, an explanatory variable beayhe temperature, which may affect
the entropy source and finally the random numbers.

An interesting question is to what extent the raespovariables depend on a variation of the
explanatory variables. Such dependencies may bediierent (and difficult to quantify). The
average voltage of the power supply may reduce/dttage entropy source and cause a bias in
the RNG output. A high resolution measurement ofvgro consumption might provide
information on single bits of the output data. Tdmalysis of the TOE should consider the
question of whether variations of some explanat@nyables may cause significant changes of
relevant statistical properties of the generateguiudata, which in turn might be exploited by
an attacker. Generally speaking, the permitted esrfgr the explanatory variables must be
specified such that the quality of the random numlseguaranteed for all these parameters.

The data types of the explanatory variables anddbgonse variables may have different types
and scales. A variable is calledtegoricalif we can only determine whether two valuds  and
B are equal A= B ) or differentAl B ). A typical example afcategorical variable is
output strings of RNGs. The appropriate interpretais integers or real numbers depends on
their usage, which is normally not linked to thengeation process. A variable is called
continuousif it can take on real numbers (within the limitexsolution of measurement device).
This allows several operations of continuous véeisib

Ordinal scale allows to distinguish data, namely wheth&k=B A! B or
A<B<C.
Interval scale allows to distinguish data, namely wheth&k=B A! B or

A< B < C. Further, the difference := A- B can be compared; exasngfiéenterval
scaled data are temperature in °Celsius or date.

Relation scale allows to distinguish data, namely wheth&k= B Al B and
A< B<C. Further, the differenced:= A- B and quotieigt= A/ B can be

compared; examples of interval scaled data are demtyre in °Kelvin, power in
Ampere, period in seconds.

In this section we describe some statistical stahtiests for sequences of binary-valued random
numbers that have been generated by an RNG. Thenss variable ‘binary-valued’ random
number is categorical, which limits the varietyapipropriate statistical methods to counts of bit
strings. These statistical tests do not expliatiyisider any explanatory variables of the RNG,
although the response values clearly may impliddpend on the explanatory variables (power
supply of PTRNG, time since power-up etc.) Othepomse variables, such as the analog
entropy signal, are continuous and require otlagissical tests.

Unless otherwise stated the null hypothesis forstlagistical tests below is that the tested data
were generated by an ideal RNG. However, sincewedld RNGs are never ideal, it is also
reasonable to take distributions into account @& not too ‘far’ from independent and
uniformly distributed random numbers.
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182 The statistician may commit two types of errors. &¥plain both types of errors by an example.
The null hypothesisH, supposes that an unknown peteard  is contained in some s&

H,:J1Q , while the alternative hypothesis is givenHby : J1Q .tRer, lett denote the
statistical test valueK, , the critical set (yielglithe rejection of the null hypothesis), and

a=supP(tl K,[).
Jio

Table 5: Brief overview of error types of statistitests

Reality
Null hypothesis Null hypothesis taue Null hypothesis igalse
Test rejects the null Error Type 1 correct decision
hypothesisH (with probability & ) (with “power” = probabilityl- & )
P{tl K,|HfE a P{th K,[H,} 1 b
Test does not rejec correct decision Error Type 2
the null hypothesis (with probabilityl- a ) (with probability 6 )
H0
P{ti K,|H} 1 a P{tl K,|H.E »

183 Roughly speaking, the null hypothesis is rejectedea test data indicate that the null hypothesis
is sufficiently unlikely. One may select betweerntapproaches to define the probability of
error type 1.

Predefined level significance: The significanceelea is selected before the experiments are
conducted. By definitiona is the maximum probapithmong all hypotheses H, that the
null hypothesis is rejected (although it is truEe test suite below follows this approach. We
note that for many statistical (non-cryptographagplicationsa =0,05 anda =0,01 are

typical significance levels. For statistical stambiests, the critical regionk,  are tabulated for
common values

P-value approach: If the p-value is smaller thammeadefined bound, the statistician rejects the
null hypothesis or he continues testing. The NISSE suite [STS] follows this approach.

184 Note that a true statistical hypothesis may beiffeds If the statistical test fails, the Null
hypothesis is rejected. If the test value is naty vanlikely, this does not confirm the Null
hypothesisStatistical tests cannot confirm the Null hypothes. But the absence of evidence
is not evidence of absencé.he statistician decides whether he continuesopsgesting on the
basis of the number of conducted tests. The aitiiat cause the end of testing depend on the
necessary (claimed) assurance that no deviatidgheoRNG from ideal RNG can be found or
used in practical attacks.
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185 The statistical tests below assume that the RN@Lmutaluesri,iT N , are binanyf bit

vectors, I, :(b(r_l)m,b(r_l)ﬁz,...,brf )T {04} . The tests TO - T8 are used in two siais

tests suites. We specify the input values, anda@gxphe computation of the test value and the
evaluation rules. For some distributions, the etype 1 probabilities are given. The statistical

tests TO, T6, T7 and T8 are applied to binary seces that are formed from consecutive
random numbers.

2.4.3. Standard Statistical Tests

186 This section describes a standard statistical teste available on the BSI website
https://www.bsi.bund.de/ContentBSI/Themen/ZerimingundAnerkennung/Zertifierungnach
CCundITSEC/Anwendungshinweiseundinterpretationeé®@C/ais_cc.html. Tests T1 to T4 are
specified in [FI1140-1] (power-on tests).

187 We assume that the input values of the statistests are realizations of random variables,
which are denoted by identical but capital lettéggart from Test T7, the null hypothesis says
that the test data were generated from an ideal .R¥WEe, however, that in our context, the
rejection probabilities for other distributions @lare very interesting, since real-world RNGs
are not ideal.

Disjointness Test

188 The disjointness tests tests the coincidence ofovenlapping patterns in a sequence seen as an
urn model.

189 Test TO(disjointness test)

|_nM: Wl' W2 ,..-,W216T {03}48

Description and Evaluation rule:

The input sequencey, W,, , W,  passes the disjointness tastibnly if its elements are
mutually disjoint.

Rejection probability for an ideal RN@ *’

Monobit Tests

190 The monobit test tests the bias of a {0,1}-valueduence. Lety, denote the number of zeros

and n, the number of ones in a sequence of lengthhen d:=(n,- n)/2n gives the
(empirical) bias of this sequence. If a sequeneeresalization of independent random variables

the Min-entropy of the sequence of random variabieay be estimated by
Hmin(nid) =- n|092(0.5|' d), and

2
for small bias.

its SHANNON entropy may be estimated tby, » n 1- I >
0d.
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191 General Monobit Test [MeOV97]

192

If we denoten, the number of zeros amd the numbenes in a sequence of n bits>10
then a potential attacker might try to combine infation gained from many signatures.

2
T1¢:Mis approximatelyc?® -distributed with 1 degree of ftem. Table 6 contains the
n

critical regions for typical significance levels.dké precisely, the table specifies boundary
values ¢ , such tha‘P{ c?s c:}E a for any random variabfe  thatisdistributed with

1 degree of freedoth Alternatively, one may apply the central limietimem. More precisely, .
345678

122 e is:; -distributed.
Table 6: Typical values of® -distribution with 1 deg of freedom
Error probabilitya 0.0% 0.01 0.001 0.0001] 0.00001 0.000001

cZ-value for the tai
probabilityp, d =1

3.841459 6.634897 10.827566 15.13670519.51142123.928127

Test T1(monobit test [FI1140-1])

Input:
Bit sequencdy, b, ,...,.0,0001 {0}
Test value:
20000
T= b (36)

Evaluation rule:

The bit sequenceb,b,,...,.b,,  Ppasses the monobit test if anty dn
9654<T, <10346.

Rejection probability for an ideal RNG: ; 4< (Central Limit Theorem=6> :4?)

Remark: The lower and the upper boundTpf reladethe frequencyf, of zeros (or ones)

f,1 (0.4827,0.517. If the relative frequency equals the (true) phility within these
borders the Min-entropy is at least 0.9509269 &ed3HANNON entropy is at least 0.9991363.

'8 The quantiles of thec 2 -distribution may be calculated, e.g., using fumetjchisq(p,df) of the tool R
available on the websiteww.r-project.org
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Block Tests
193 General Block Test [MeOV97]:

Divide a binary sequence of lengthin non-overlapping blocks of length and assume that
n

— 3 52" Identify the admissiblem-bit blocks (C,,,C., ,G) Wwith the binary
m

m-1

representations = c].2j and defimgas number of blocks with value. Under the null

j=0
hypothesis, the test statistic

2m 2m.1 n
Te="— 2 - kwith k:= — 37
2= n o (37)

i=0

is approximately ¢® -distributed with @ » B degrees of freedom. Table 7 contains the
critical regions for typical significance levels.oké precisely, the table specifies boundary

values ¢ such thaP{ c?s cj}£ a for any random variabfe  thatsdistributed with
d degrees of freedom.

Table 7: Typical values of? -distribution with degref freedond

Error probabilitya 0.05 0.01 0.001 0.0001] 0.00001 0.000001
m=1 d=1 3.8415  6.6349 10.827§ 15.1367 19.5114 23.9281
m=2,d=3 7.8147| 11.3449 16.2662 21.1075 25.9018 30.6648
m=3,d=7 14.0671 18.4753 24.3219 29.8775 35.2585 40.5218

m=4,d=15 249958 30.5779 37.6973 44.2632 50.4930 56.4934

m=8, d =255 293.2478 310.4574 330.5197 347.6542 362.9888 377.0781

194 Test T2 (poker test [FI1140-1])

Input:
Bit sequence;, b, ,...,0,00001 {0}

Description:

c, =8, 5 +4b, ,+2b, i +b, and f[i] =[] | c, =i} forj=1, .., 500(.
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Test value:
16 5000 , .
=——  “"f[i]*- 5000 38
> 5000 o |11 (38)

Evaluation rule:

The sequenc®, b, ..., By Passes the poker tekl0B8<T, < 57.4

Note: For an ideal RNG, the test valuedd  -distélduwith 15 degrees of freedom.

Rejection probability for an ideal RNG; C ; < (D(-approximation)
Runs Tests

195 General Runs Test [MeOV97]:

The expected numbear(n,i)  of O-runs (or 1-runs) of lehgi an independent unbiased binary
sequence df bits is

r(n,i)=(n-i+ 3)/2*. (39)

Let f(n,i,/) the observed number biruns, / T {0,3 , anc be equal to the largest integer
for which r(n,i) 2 5. The statistic used is

T K (F(n,i,0)-r (i) N K(rai i)

: i=1 r(n,i) i=1 rq,i) ,

(40)

which approximately follows ac?® -distribution wit2k - 1 egrees of freedom. Table 8
contains the critical regions for typical significa levels. More precisely, the table specifies

boundary valuesc?  such thef?{ c?s cj}E a  for any random vari@blehat is ¢” -

distributed with d degree of freedom. Additionallygble 8 provides the link between the run
length k and the degrees of freedom d

Table 8: Typical values of? -distribution for runs

Error probabilitya 0.05 0.01 0.001 0.00013 0.00001 0.000001
k=1,d=1 3.84146 6.63490 10.82757 15.1367Q 19.51142 23.92813
k=2,d=3 7.81473 11.34487 16.26624 21.10751 25.90173 30.66485

k=3,d=5 11.07050 15.08627 20.51501 25.74483 30.85619 35.88819
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Error probabilitya 0.05 0.01 0.001 0.00013 0.00001 0.000001

k=4,d=7 14.06714 18.47531 24.32189 29.8775Q 35.25854 40.52183

k=5,d=9 16.91898 21.66599 27.87716 33.71995 39.34065 44.81094

k=6,d=11 19.67514 24.72497 31.26413 37.36699 43.20596 48.86564

196 Test T3(runs test [FI140-1])
Input:

Bit sequence;, b, ,...,0,0001 {0}

Test values:

T(/, P =1 12000k, b .., B.) PE B 16 = b= ph.s A J

where, pl {0,3, bh:=b A1, /=1, 2, ..., 20000, By := bygooA 1. i-€., the test values
are numbers gf- and -runs. A run is a maximum sub-sequence of consgeatroes or ones.

Evaluation rule:

The input sequench, b,, ..., by, Passes the run test if andfonly

"pi {0 /1 15: m(/)ET,(/,p) EM(/) and (41)
20000 20000

mEE T,(/0, T,(DHEM®E) (42)
/=6 /=6

i.e., the number of the occurring runs of zeroas@mes with lengths 1, ..., 5 and the sum of all
runs of zeroes and ones with lengths greater thdie Svithin the permitted intervals, as
specified below.

Run lengtH Lower bound of the intervan(/) Upper bound of the intervdl (/)

1 2267 2733
2 1079 1421
3 502 748
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Run lengtH Lower bound of the intervah(/) Upper bound of the intervd¥l (/)

4 223 402
5 90 223
36 90 223

Rejection probability for an ideal RNG.0 °®
197 Test T4(long run test [FI1140-1])
Input:
Bit sequenced, b, ,...,b,y001 {02}
Description:
A run of length® 34 is called a long run.

Evaluation rule:

The input sequench,,b,, ,b,,,, Passes the long run test ibalydf

" pl {01 /1 3420000 T,(/,p) =0 (43)
i.e., if no long run occurs.

Rejection probability for an ideal RNGO °
Autocorrelation Test

198 Autocorrelation Test [MeQOV97]:

Let s=($,5 . S.)1{0}" be a binary sequence, a fixed integer, LEd £ n/2

n-d 1
S(nd-= (sA s,), where A denotes the XOR-sum operator &d a sumeaf
i=0
numbers. We consider the test statistic

T.(nd)=2 S(n9- n-2d /\/ A C (44)

which approximately follows ailN(0,1) the Normal (Gausidistribution with mean 0 and

variance 1 ifn- d® 10 . A two-sided test should be appli€dble 9provides typical values
for a normal (Gaussian) distribution with mean @ amriance 1 for two-sided tests. More
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precisely,Qy (@ /2) denotes thg2-Quantiles
P{T.£- Quon(@/20 T Qua/2}E a. (45)

Table 9: Typical values of Normal (Gaussi&fp,1) for a two-sided test of autocorrelation

Error probabilitya |0.05 0.01 0.001 0.0001 0.00001  0.0000p1

QN(OI)(a/Z) 1.959964 | 2.575829 3.29052) 3.890592 4.417173 A43P16

199 Test T5(autocorrelation test)

Input:
Bit sequence;,b, ,...,0,0001 {0}
parametert 1 {1,2,...,500¢

Test value:

()= (hAb.,) (46)

Evaluation rule:

The input sequench,,b, ,...,b,,,,, Passes the autocorrelatiofviggbtshiftt) if and
only if 2326<T,(t) < 2674.

Rejection probability for an ideal RNG and for eatiift parameter 1 {1,2,...,500(} i0°

Multinomial Distributions Tests

200 Multinomial Distribution Tests constitute speciases of contingency tables, which will be
discussed in Section 2.4.5.2.

201 Test T6(uniform distribution test)

Input:
parameteik (length of the vectors to be tested)
parametem (length of the sequence to be tested)
parametera (positive real number)
sequence of k-bit wordén,,w,, ,w,) WiT {O,l}k,i =12 ,n
Test value:
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202

for all xT {01}* (47)

Ts(X) :=|—{j :er] =X

Evaluation rule:

The sequencey,w,,...,w, passes uniform distribution test patameters(k, n,a)

if
T,(9T [2% a2% 4 forall xi {0,}" (48)
Special cas&k =1

The sequencsv,, W, ,...,w, passes the uniform distributioriftest

n
T,(0)T [05- a,05+4] (49)
Test T7 (comparative test for multinomial distributionsadkest for homogeneity’)

Assumption:

We assume that the random variatin,sz ,...,Whj desdnibe pémdient repetitions of

the j™ random experiment, and that these randomblasiaare independent and identically
distributed for each fixedjT {1,...,n} . The distribution (le ,V\/Zj,...,\/\/hj s given by

B =(Pojs Py e Poe ;) i py =PRW, =tf fori® {L...m,tT {012...,5- 1.

Significance levela.

Input:

Vectors  (Wyy, W, oo Wiy ) (Wipo Wy oo Wiy ), oves (W s Woy oW )T {0, 5-13" where
(le,wzj,...,whj) denote the outcome oh independent repetitionsthef jth random
experiment,j =1,2, n.

Null hypothesis:
p =p, foralli,jl {12...h}

Test value:

The value f,[t] :‘{ji E‘Wij :t}‘ i=12 ,h ti {O,:LZ, ,S- 1} counts the number of

occurrences of iIw,,w w,_ , and denotes

i1y P21
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AR ACENEEAUR

o 012 ,s-1, (50)

t
the relative frequency far  within all samples. Tast valueT,(h,s) is defined as

T,(hs):= (f[t]- np)*/np (51)

i=1, ,ht=0, s-1
Evaluation rule:

The test fails if T, (hs) > ¢*(a,(h- 1)(s- 1)), where ¢?(a,(h- 1)(s- 1)) is the rejection
bound for ac2-test with (h-1)(s-1) degrees of freedom at sigaiice levela

Entropy Estimation

203

204

205

Under specific assumptions defined below (i.eleast for independent identically distributed
binary-valued random variables),0BON'S test [CoNa98] is more precise than Maurer's
"Universal Statistical" Test [Mau].

The Approximate Entropy Test [STS] [Ruk2000b] pdms another entropy test for
independent and identically-distributed variablEise Approximate Entropy Test compares the
frequency of overlapping blocks of lengtimsandm+1 against the expected result for a random
sequence.

Test T8 (entropy estimation) [CoNa98]:
Assumption:
Let the random variable$3,,B,,... model a stationary binvatyped ergodic random source

with a finite memoryM £ L .

Input:
(a)word lengthLL

(b)Q andK test parameter
(c)Bit sequencdy,b,,....n, N=(Q+K)L

Test value:

For i=12...Q+K we consider non-overlapping wortl¢ = (D ;1,0 3 .o, ,B)  of

length L . Further,AA denotes the distance fram  ¢onikarest predecessor that assumes the
same value,

n if no i <n existwithw, =w,_;
min{i|i ® Lw,=w, } inall other case

A = (52)

The test valuef. is defined as
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1 X

o1
fe —Ewﬂg(ﬁ) with g(i) ~100@)

Entropy estimation:

Under the assumptions from above (stationary biwahlyed random source with finite
memory), the expected vallg(f.) of test variable

per L-bit block. If the random

E(f) =H,(W)=LH,(B).
Evaluation rule:

Note: If the random variableB,, B,,...

meanE- G and variancesé provides a good distribution of testiable f. .

precisely,s . =c.(L, K)\/Var( g A))/ K &(LK=dD+

Table 10: Parameters for entropy test

variables B, B,,...

osally related to the entropy increase
indiagent,

are independent antibiged, a normal distribution with

L varianceVar(g(A,)) d(L) eL)

3 2.5769918 0.3313257 0.4381809
4 2.9191004 0.3516506 0.4050170
5 3.1291382 0.3660832 0.3856668
6 3.2547450 0.3758725 0.3743782
7 3.3282150 0.3822459 0.3678269
8 3.3704039 0.3862500 0.3640569
9 3.3942629 0.3886906 0.3619091
10 3.4075860 0.3901408 0.3606982
11 3.4149476 0.3909846 0.3600222
12 3.4189794 0.3914671 0.3596484
13 3.4211711 0.3917390 0.3594433
14 3.4223549 0.3918905 0.3593316
15 3.4229908 0.3919740 0.3592712
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L VarianceVar(g(A,)) d(L) e(L)
16 3.4233308 0.3920198 0.3592384
infinite 3.4237147 0.3920729 0.3592016

For n3 23, the following sum approximatggn)  with an erc0®:

n j'1=logn+g+i+ L
1o 2n  12n?

+0 i4 , 9 » 0.577216(Euler constant) (55)
n

2.4.4. Test procedures

206 In this section we describe two complex test pracesi that are part of the evaluation process.
The statistical tests TO to T8 with the evaluatioles specified in the previous subsection are
the basic components of these test procedures.

207 The input data of test procedure A are sequehoédit random numbers. In a first step, these
random numbers are interpreted as binary sequences.

24.4.1. Test procedure A
208 Input: Step 1: at least 3145728® < CHbits ; Step 2-7: at least 514000@;;;; @I1J bits.

209 Description of test procedure A:

Step 1: Letc, denote the smallest integer for whickf 348 and p, ,, the projection onto
the leftmost 48 bits. Apply  Test TO to the sequence

W= 01 (Tl W, Z 0 gl vl g )i Wys 0 1..48'(@6_1)01” +lige, » @Nd
apply the evaluation rules specified in the presisubsection.

Step 2: Letc, denote the smallest integer vaghxf 32000C Andthe projection onto the

w" componerif. Generate a sequence of f-b{t) random numbers, interpret the
concatenation of these random numbers as a bieaggyesce, and store the projection
onto the leftmost 20000 positions; = (b, b3...,05,,,0) - Generate aesge of 20000

f-bit random numbers, buikf = (bZ,b2...,0%,,0) .S =" 0" bRy
where s*™ consists of thd" ibits of the 20000 random numbers. Continue thig wa

(generating sequences ©f  and of 20000 random msmiespectively) unti6™’  sets
have been built.

% 1n Step 5, the basic tests T1 — T5 are appliedtdom numbers (which are interpreted as bit stjiagd to
the traces of the random numbers.

18 September 2011 AIS 20/ AIS 31 page 54



A proposal for: Functionality classes for randonminer generators

Step 3 — Step 6: Apply the tests T1-T4 to bit seqae = (4, B,..., By,,,) fori =1..257 .

Step 7: Apply Test T5 to bit sequencg=(H4,B,...,B,00,) f0F 1..257 . Fochea
sequence, do the following: Calculate the test eld,,...,.Z;,,, (see test T5) for
B, 0,,....0 0000 determine max, ..o, f| Z, - 2500|} ; select, (randomly in case of
several candidates) for which this maximum is assijnand apply TS5 to the sub-

sequenced =B o+ Bioose = Pogoso With shift paramety
210 Evaluation rules for Test Procedure A:

(a) If all 1285=1+257>5) basic tests have been passed, tesedwre A is passed. For an
ideal RNG this happens with probability,6==HJ .

(b) If more than one basic test has failed, testguure A is failed. For an ideal RNG this
happens with probability ; .

(c) If exactly one basic test has failed, the staian (evaluator, etc.) applies test procedure A
once more to new internal random numbers and apglialuation rules a) and b). If within a
second run of test procedure A one basic test, fadlt procedure A is failed. A second
repetition of test procedure A is not allowed.

Justification: Test procedure A is applied to otitpequences of DRNGs, PTRNGs and NPTRNGs.
The goal of test procedure A is to check whetherrimdom numbers (for PTRNGs: internal random
numbers) behave statistically inconspicuously. phgection onto the particular components of the
internal random numbers shall detect when partiqudaitions of the internal random numbers behave
differently than others. For an ideal RNG the philitg that test procedure A finally fails is almads

2.4.4.2. Test procedure B

211 Input: Sequence of bits;,b,,...T {01}  (Unlike for test procedure @ iumber of input bits is
not fixed but depends on the input sequence.)

212 Description of test procedure B:

Step 1.Apply the uniform distribution test T6 with parareeset (k, n,a) = (11000000025
to by,0,,...Bi50000-

Step 2.Consider the next bits of the input sequence (hese not used for the first test); split
the non-overlapping pairgB, ;o001 100002 (Prooooz Pioggos)s---  iNto two  disjoint  sub-
sequenceSF, an@iF , whefb,,;,b,.,) belongJte if and onlhy;if =1
continue this procedure until bofiF,  ardf, have at least, :=100000 elements;

consider the firsth, many2-tuples of each sub-sequence and determine theieshi-
step transition probabilities

n_empr)(i) ::| { J £ nl : (b2j+1’b2j+2),[ TF(r)'b2j+2 = I} |/nl
This basic test is passed if and onlyaf_emp, () +v _emp, (0) - 1<a, = 002.
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Step 3.Consider the next bits of the input sequence alidtbp sequence of hon-overlapping
triplets into 4 disjoint sub-sequenceés,,,...,TF, where (b,;,,,b,,,,b;,;) belongs

to TR if and only if (by;,,,0,,) =(r,S) ; continue this procedure urgich sub-
sequence has at leasf :=100000 elements; consider thenfjratany 3-tuples of
each sub-sequence and determine the empRical trsiggition probabilities
n_emp, (i) :4{j£n,: (b3j+1’b3j+2’b3j+3)T TF o.bsj.5 =i}/ 0y,

for each si {01} , compare/_emp,,  and/_emp,, with test T7 at the
significance levela, := 0.0001 for equality.

Step 4.Consider the next bits of the input sequence alitlse sequence of non-overlapping
quadruples int@ disjoint sub-sequendds,,,...,TF,; where

(by;.1,04;.5,04;.5,0,;.,) belongs toTF if and only ifb,.,,b,;.,,0,.5) = (r,8,1) ;
continue this procedure until each sub-sequencatiaastn, :=100000 elements;

consider the firshymany4 -tuples of each sub-sequence and determine theieah(3
-step transition probabilities

n_emgr,s,t)(i) ::' { J £ n3 : (b4j+1’b4j+2’b4j+3’b4j+4)T TFrs’b4j+4 = I} |/n3;
for eachs,tT {01}? , compare_emp,,, and_emp,,, withtestT7 atthe
significance levela, := 0.0001 for equality.

Step 5.Apply the entropy test (test T8) with the paranete =8Q =2560 and

K =256000to the next elements of the input sequence. Tess Tssed if the test
variable f > 7976 .

213 Evaluation rule for Test Procedure B:

a) Ifall 9(=1+1+2+4+1) basic tests have been passed, test proedglis passed. For
an ideal RNG this happens with probability,6===

b) If more than one basic test has failed, test pnoee® is failed. For an ideal RNG this
happens with probability ; .

c) If exactly one basic test has failed, the staieti¢evaluator, etc.) applies test procedure
B once more to new das-random numbers and appligsiation rules a) and b). If
within the second run of test procedure B exaatlg basic test fails, test procedure B is
failed. A second repetition of test procedure Bia¢ allowed. For an ideal RNG the
probability that test procedure B finally failsabnost 0.

214 Goals and justification: Test procedure B usuallyapplied to binary-valued das-random
numbers of PTRNGs. The goal is to ensure that tiwgy per das-bit is sufficiently large. A
small bias and slight one-step dependencies armifped, but no significant more-step
dependencies. This means that if the first predecasf a bit (or the first two predecessors) are
identical, all 2-last (or 3-last predecessors) Isitaluce the same 2-step (or 3-step) transition
probability. Moreover, although the stochastic modé the das-random numbers should
exclude possible long-term correlations, the evaluaghall search for possible long-term
correlations. If these requirements are fulfilled ahe one-step transition probabilities are
negligible, the test valuefrom Test T8 provides an entropy estimator.
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2.4.5. Additional Statistical Tests

215 This section discusses how statistical analysithefRNG by standard test suites like those
described above may be extended by additionalsi@igts or by more specific tests. These
statistical tests could be useful, e.g., for thalysis of random entropy sources if the hypothesis
of uniform distribution is rejected and digitizeshdom signals need post-processing.

245.1. NIST RNG test suite

216 The U.S. National Institute of Standards and Teldgy (NIST) developed a test suite for
RNGs used for cryptographic purposes. The test ssiiivailable from the NIST RNG project
website http://csrc.nist.gov/groups/ST/toolkit/mggumentation_software.html. It contains 16
tests (cf. for details to [STS] or http://csrc.masw/groups/ST/toolkit/rng/stat_tests.html):
Frequency (Monobit) Test, Frequency Test withinlacB, Runs Test, Test for the Longest-
Run-of-Ones in a Block, Binary Matrix Rank TestsEriete Fourier Transform (Spectral) Test,
Non-overlapping (Aperiodic) Template Matching Te$dverlapping (Periodic) Template
Matching Test, Maurer's "Universal Statistical" Tekinear Complexity Test, Serial Test,
Approximate Entropy Test, Cumulative Sums (Cusui=3t, Random Excursions Test, and
Random Excursions Variant Test.

217 The tests calculate the p-value for the test vatleserved. If the computed p-valige< 0.01,
then it is recommended to conclude that the seguisneon-random. Otherwise, conclude that
the sequence is random. The tester ne&ds2073741824) bits to run the NIST test suite with
recommended parameters.

Table 11: Recommended parameter settings for tB& kst suite

Test Configuration item Setting

Bits per sequence 1000000
All tests

Number of sequences (sample size) 1073
Frequency Test within a Block Block length 20000
Non-overlapping template test Template length 10
Overlapping template Block length 10

Test block lengti. 7
Maurer’s “Universal Statistical” test

Initialization steps 128D
Approximate Entropy Test Block length 8
Linear Complexity Test Block length 1000
Serial Test Block length 16
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2.4.5.2. Contingency table test

218 This section describes the method of contingendyetdo test the Null hypothesis of
independence of consecutive bits strings in thdiostary RNG output by means of a
contingency table (also known as “test of homoggheiNote that test T7 is a special case.
Chapter 5.1 of this document provides a converiRestript for analysis of binary data.

219 Let {B}iTN denote a sequence of stationary random vasatiiat describe the output of the

RNG. By definition of independence, a string yf nsecutive bits is independent of tixe

preceding bits if and only if for any binary strir(d ,b)T {0,}"“and any positive

y+x?

integert (stationarity property)

PI(Bye B =(Bey B} =

(56)
= P{( By+x+t! ’ Bx+1+t) :( Q(+yl ’ t?+>)} XR arux ’ B+)[ # Q ’ n
holds. Stationarity clearly implies
P(B. .B)=(h . Q}=R R, ., B)ybh ., B (57)

for any valuesh,,...,j and for any positive integé&rs  &andhe basic idea is counting bit

strings in the RNG output and testing the frequessyan estimate of the probabilities against
the formula (55).

220 Suppose we generate a binary seque{h;}elzlm and wimst tohethery  bits depend on
bits generated before. We divide this sequence imto non-overlapping strings
(Opixey 10 1Bt Be 1 1B) Of x+y bits, ki O,n 1. Let n, denote the observed
frequency of strings, where the lefy bits intetpce as dual number equal

I =0y, 10 +Bxy ), and the right x  bits interpreted as dual numbeuvakq] ,
Cc r
j=(04, 1 B ), Denotefuthem = n anch,= n ,where for shartz2"- 1
j=0 i=0
and c=2"-1. Thenn /n is the relative frequency of the skinbat left parts hold
I =0y, 1 ey )o@ndn;/n is the relative frequency of the strings tight parts hold

j=0b,, . B ), Following (55), one expectsn,/n»(n./n(n/n in case of
independence of the left and right bits.
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221

222

left segment shift
A

] :

Y NG
y left bits  xright bits

’,/ c=2"-1

r=2v-1

AL
N
J C
Ny, Ny | No.
. sum of
I | N . n
‘< i0 rh nc i rows
LT | Mo N e | N
n, n; n. n

sum of columns

Figure 2: Contingency table for counts of conseeutiits strings

More precisely, if the bit strings are independéme, test valuec®  will bec® -distributed with
rc degrees of freedom,

n.n;
r ¢ nij ) n rc n.?
52 = —_ =n — -1 (58)
i=0 j=0 n.n, i=0j=0 .1
n
with density
Xd/2—1e— x/2
Sz oy X0
r(x,d)= 2°G(d/2) (59)
0 X£0

Note that for smaln and?<0.1 , the® -distribution isyml coarse approximation. The
expected values 01\]. far=0,1, r ang=0,1, ¢ shall be greater tharhe statistical

literature like [Craw07], [SaHe06] may be consultéd further details about usage of
contingency tables.
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223 Chapter 5.2 discusses examples that apply contizgeble tests.
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3.

224

3.1

225

Security Functional Requirements - Family FCS_RNG

This chapter guides PP and ST writers how to desdhie security functional requirements for
RNG. The extended family FCS_RNG describes SFRR$6Gs for cryptographic and other
applications in PP and ST.
Definition of FCS_RNG

This section describes the functional requireméortthe generation of random numbers, which
may be used as secrets for cryptographic purposeauthentication. The IT security
functional requirements for a TOE are defined inaalditional family (FCS_RNG) of the
Class FCS (Cryptographic support).

FCS_RNG Generation of random numbers

Family Behaviour

This family defines quality requirements for thaengeation of random numbers that are intended
to be used for cryptographic purposes.

Component levelling:

FCS_RNG: Generation of random numbers — 1

FCS_RNG.1 Generation of random numbers, requires tiie random number generator
implements defined security capabilities and that tandom numbers meet a defined quality
metric.
Management: FCS_RNG.1
There are no management activities foreseen.
Audit: FCS_RNG.1
There are no actions defined to be auditable.
FCS_RNG.1 Random number generation
Hierarchical to: No other components.
Dependencies: No dependencies.
FCS RNG.1.1 The TSF shall provide a [selectnysical, non-physical true, deterministic,
hybrid physical, hybrid deterministiicrandom number generator that

implements: [assignmerlist of security capabilitids

FCS RNG.1.2 The TSF shall provide random numbeas theet [assignment defined
quality metrig.
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3.2.

226

227

228

229

230

231

232

Security capabilities of RNG types

The PP writer may and the ST writer shall perfone doperations by selection of the RNG type
and by assignment of security capabilities in leenent FCS_RNG.1.1 and the assignment of
the quality of the generated random numbers inefleenent FCS_RNG.1.2. The security
capabilities may be assigned by identification pfedefined class that is described by a list of
security capabilities and a quality metric of tmeyided random numbers.

The PP / ST writer may define thNG type by selecting the type of the RNG (“physical”,
“non-physical true”, “deterministic”, “hybrid physhl” or “hybrid deterministic”) in the
element FCS_RNG.1.1. The RNG types are describsédtion 2.2.3.

The PP / ST writer may consider typicacurity capabilitiesto perform the operation of the
element FCS_RNG.1.1 as described below.

A physicaltrue RNG uses dedicated hardware as an entropy sdutgpically implements the
following security capabilities: CPG.x, x=1, 2 v@hich address internal tests.

CPG.1: Total failure test of the entropy source ewh total failure has been detected no further
random numbers will be output.

A total failure of the entropy source implies thfa increase of the overall entropy of the output
sequence by future raw random numbers is 0. A fatlalre test of the random source detects a
breakdown of the noise source. The RNG immedigisdyents the output of random numbers
if a total failure of the random source has beeteated. Under suitable circumstances, e.g. if
random numbers have been buffered or if entrop\stared’ in the internal state, a larger
latency of the tot test may be allowed.

CPG.2: Online test of the raw random number sequaMhen a non-tolerable statistical defect
of the raw random number sequence has been detectédther random numbers will be
output.

The online test detects non-tolerable statistiefbcts of the raw random number sequence and
prevents the output of future random numbers. Nberdble statistical defects violate the
quality of random numbers defined in FCS_RNG.1.2t&#tistical online test of the raw random
number sequence may be very effective to ensurguhbty of output random numbers if the
post-processing algorithm works correctly The T&#t tapabilities of the post-processing (e.g.,
known-answer test) or an online test of the interaadom numbers should complete the online
test of the raw random number sequence.

CPG.3: Online test of the internal random numb®fBen a non-tolerable statistical defect of
the internal random numbers has been detectedrtin@fuandom numbers will be output.

The online test detects non-tolerable statistiedkcts of the internal random numbers. The
RNG prevents output of random numbers if non-tdlleratatistical defects have been detected.
A statistical online test of the internal randomminers may detect a failure of the noise source
of the digitization mechanism, or of the post-pssieg. If the post-processing algorithm has
internal memory, it might produce pseudo-random lbens even after the noise source has
completely broken down. The test shall detect mderable statistical defects of the internal
random numbers, or it shall be completed by an @pate test of the raw random number
sequence.

18 September 2011 AIS 20/ AIS 31 page 62



A proposal for: Functionality classes for randonminer generators

233

234

235

236

237

The hybrid physicalRNG typically implements additional security capiiies CPG.x, x=4, 5,
extending those of the physical RNG:

CPG.4: On average (over the time) the raw randombeu sequence should provide at least as
much entropy to the post-processing algorithm astitput sequence can at most attain. (This
upper entropy bound clearly is attained for iidfamnly distributed sequences over the output
alphabet of the output function of the same length.

Let us assume that the raw random number sequemarajes entrop¥  per time interval
where the RNG outputs internal random numbers theemlphabeR . In average the output

sequence can at most contain fresh ent®py butykeat more tharl >4092|R| , which would

be obtained by ideal output sequences (i.e., iitbrmly distributed) onR . Ife? | >4092|R|

on average (over the time), the post-processingrigthgn principally might smooth the
distribution of the das random numbers towardsdik&ibution of independent and uniformly
distributed random variables. CPG.4 formulates@s®ary condition for the generation of true

random numbers with maximum entropy.af< | >40g2|R| on averager the time, the RNG

cannot generate random numbers with maximum entrdpy generate output that is

(computationally) indistinguishable from uniformligistributed and independent random
numbers, the RNG then must extend the raw randambau sequence by means of a DRNG
(hybrid DRNG, cf. CDG.5).

CPG.5: On average (over the time) the raw randomber sequence should provide at least as
much entropy to the cryptographic post-processiggrahm as the output sequence can at most
attain. (This upper bound clearly is attained fdruniformly distributed sequences over the
output alphabet of the same length.) The capal@®G.5 enhances the capability CPG.4 by
means ofcryptographicpost-processing. The capability CPG.4 provideg@essary condition
that the internal random numbers can have maximotrogy. Defects that affect statistical
properties of the raw random number sequences megluce their entropy, and then the online
test should detect these effects (non-tolerablesstal defects) (cf. CPG.2). A cryptographic
post-processing algorithm hardens the internal aanchumbers against attacks in case of
entropy defects that occur in the time between weage and detection by the online tests. This
feature might be relevant due to limited effectess of the online tests.

A deterministicRNG produces random numbers by applying a detéstiralgorithm to a
randomly-selected seed and, possibly, on additiertdrnal inputs. It typically implements
security capabilities CDG.x, x=1, 2, 3, 4, 5, diofes:

CDG.1: The seed of the DRNG has minimum entropgiggmsnentvalug to prevent successful
guessing attacks with the assumed attack potential.

The ST writer shall identify the minimum entropytbe seed as a security feature of the RNG.
The entropy shall be provided by the non-deterrtimigart of RNG, e.g., a physical RNG, or
by an external source, e.g., during installatiovst@ntiation) of the TOE. The entropy may be
defined in terms of Min-entropy or Shannon entroplyis choice should be appropriate for the
random source for seeding the RNG.

CDG.2: The DRNG provides forward secrecy.
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245

Forward secrecy ensures that subsequent (futuhe¢sr@annot be determined from current or
previous output values [ISO18031]. This unprediditstoproperty is a natural security feature
of random numbers.

CDG.3: The DRNG provides backward secrecy.

Backward secrecy ensures that previous output ¢ammaletermined from current or future
output values [ISO18031].

CDG.4: The DRNG provides backward secrecy evemeifdurrent internal state is known.

Enhanced backward secrecy ensures that previopsatazannot be determined from the known
(compromised) current internal state, current auriioutput values.

CDG.5: The DRNG provides forward secrecy evenefititernal state is known.

Enhanced forward secrecy ensures that subsequentelf values cannot be determined from
known (compromised) current internal state, currentprevious output values. Enhanced
forward secrecy may be ensured by reseeding cesf@fig of the internal state initiated by a
specific function of the RNG.

The deterministic hybridRNG typically implements additional security caitiibs CDG. X,
X =6, 7, extending those of a pure deterministicRN

CDG.6: The DRNG refreshes the internal state withrdernal random source [selectiam
demand, continuously, [assignment: other method]

The RNG refreshes the internal state of its det@stic part by non-deterministic input from an
internal random source. This capability does nangfy the amount of fresh entropy of the
input data. (This requirement is weaker than aeesef. CDG.7).

CDG.7: The DRNG provides reseeding of the intestate by an internal random source
[selection:on demand, automatically, [assignment: other method

The RNG initializes the internal state of its detgristic part by non-deterministic input from
an internal random source. The new initial statdl ¢fe independent of the current value of the
internal state. Hence, the RNG estimates the epwbthe non-deterministic input to ensure a
lower entropy bound for the entropy of the newrinét state.

A non-physical RNG uses non-physical external random sources mwithe operational
environment to generate random number output. Diipgnon the relation between the
entropy of the input data and the output data,mag distinguish between non-physical RNG
and hybrid non-physical RNG.

A non-physical trueRNG gets fresh entropy from non-physical extemaaldom sources. The
estimated entropy of these data, resp. the estivetopy of an entropy pool, is at least as
large as the amount of entropy that would be athioy output sequences that stemmed from
an ideal RNG. This condition is similar as for hygbphysical true RNGs, which use internal
noise sources, cf. para. 228 on page 67.

A non-physical non-deterministRNG typically implements the security capability GN as
follows:
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CNG.1: Examination of the external input [assigntngypes of input dafao ensure sufficient
entropy to generate random numbers.

The NPTRNG tests the external input data to enthatethey provide sufficient entropy for the
internal state and thus finally for the output dathe entropy estimate for the input data is
(usually) based on heuristic assumptions on ther@atf the input data. The IT environment of
the TOE shall ensure that these assumptions (asiloksd in the security objectives for the IT
environment in the PP / ST) are indeed valid. B@angple, the NTPRNG design may exploit
the user’s keystrokes as an entropy source, amahiputes some entropy estimate on the basis
of the pressed keys and the time instants whenabegtruck. This entropy estimator might not
detect a simulation (the repetition) of such keyleds by malicious software that shall allow to
reproduce known internal states.

A non-physical trueRNG typically implements an additional securityahility on guaranteed
entropy as follows:

CNG.2: Each random number has fresh entropy oiglasgent:quantity ofentropy.

This quality metric may assign a lower min-entrdyound per random number, which allows a
direct estimate of the minimum guess work needethi® generated random numbers as part of
the vulnerability analysis (cf. section 2.3.2 on BR). This quality metric may assign Shannon
entropy per random number, which under suitableuanstances (stochastic model!) is easy to
estimate with test procedure suite B. This valug b@used to estimate the guess work for the
generated random numbers in vulnerability analys. if the bits are independent (cf.
paragraph 114 on page 29 for definition of indejeeice).

The overall entropy of output sequences from tri&R increases with their length. In contrast,
the entropy of output sequences from DRNGs is lglelmited by the seed entropy.
Therefore, if the TOE shall generate cryptograieigs that shall resist high attack potential:

the TSF may call the TRNG until sufficient entrdpycollected
the SFR shall require 100-bit entropy of DRNG ieneént FCS_RNG.1.2
The quality of the random numbers produced maydseribed as follows:

QRN.1: The RNG generates numbers that are nondigshable from ideal random numbers
by means of [selectiomest procedure A, [assignment: other test siliite]

The quality metric “are not distinguishable fromeal random numbers by means of test
procedure A" is easy to test, but its applicationthe vulnerability analysis might not suffice.
This would mean, for instance, that if test procedd has been selected on basis of the
statistical properties that are considered byt#ss suite the designer should be able to estimate
the guesswork for the output sequence.

QRN.2: Statistical test suites cannot practicalitidguish the internal random numbers from
output sequences of an ideal RNG.

This quality metric is suitable for the vulneratyiliassessment, but difficult to test. The
demonstration of this quality metric will use othieoretical evidence as well. E.g. if the RNG
uses cryptographic post-processing the standatidtital test might not detect defects of the
raw random numbers or entropy defects of the output
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Rationale for definition of the extended component
The CC part 2 defines the component FIA_SOS.2, misicimilar to FCS_RNG.1, as follows:
FIA_SOS.2 TSF Generation of secrets
Hierarchical to: No other components.
Dependencies: No dependencies.

FIA_SOS.2.1 The TSF shall provide a mechanism to generatetseitrat meet [assignment:
a defined quality metr]c

FIA_SOS.2.2 The TSF shall be able to enforce the use of TSkemgeed secrets for
[assignmenttist of TSF functioris

The CC part 2, annex G.3 [CCV31_2], states: “Thesnify defines requirements for
mechanisms that enforce defined quality metricpmvided secrets, and generate secrets to
satisfy the defined metric“. Even the operatiorthia element FIA_S0S.2.2 allows listing the
TSF functions using the generated secrets. Bealuagplications discussed in annex G.3 are
related to authentication, the component FIA_SGsS&2so intended for authentication purposes
while the term “secret” is not limited to autheation data (cf. CC part 2, paragraphs 39-42).

Paragraph 685 in the CC part 2 [CCV31_2] recommesdsof the component FCS_CKM.1 to
address random number generation. However, thishity/the nature of the secrets used for
key generation and does not allow describing randounmber generation for other
cryptographic methods (e.g., challenges, paddiag)hentication (e.g., password seeds), or
other purposes (e.g., blinding as a countermeagaimst side channel attacks).

The component FCS_RNG addresses general RNG, ¢hef wghich includes but is not limited
to cryptographic mechanisms. FCS_RNG allows to ifpeequirements for the generation of
random numbers including necessary informationtfier intended use. These details describe
the quality of the generated data where other ggaarvices rely on. Thus by using FCS_RNG
a ST or PP author is able to express a coherenf &fRs that include or use the generation of
random numbers as a security service.
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260

261

262

Pre-defined RNG Classes

This chapter defines classes of PTRNG, NPTRNG aRM® for typical use cases. These
classes are hierarchically organized. The defimitmf these classes is accompanied by
application notes explaining their security cagtieg and quality metrics.

This chapter also identifies the minimum informatiExpected from the technical point of view
to fulfil the assurance requirements addressechénRP or ST. The following paragraphs
identify the lowest assurance elements descrildnegrélevant evidence. If the ST requires a
component hierarchical to the mentioned assuraongonent, the equivalent element of the
hierarchically-higher component will require analegnformation.

Overview of pre-defined RNG classes

This section defines pre-defined RNG classes basedhe component FCS _RNG.1. It
describes the specific evidence necessary forvakiation of an RNG class based on a chosen
EAL according to the CEM.

The security functional requirements of the RNGsslaare described by means of the
component FCS_RNG.1 where

the RNG type is selected,
the security capabilities are assigned,
the quality metric is assigned.

The developer shall provide specific informatiorsatibing how the RNG meets the assurance
requirements expressed in a PP or ST for the $gdumctional requirements described in
FCS_RNG.1.

If the ST defines in FCS_RNG.1 that the TOE supponrte of the pre-defined RNG classes, the
developer is expected to provide specific inforamatand evidence for the assigned security
capabilities and quality of the random numbers sdiog to the content and presentation of
elements for the assurance components selectdieilST. If the ST requires a component
hierarchical to the mentioned assurance componém, equivalent element of the
hierarchically-higher component will require analegnformation.

The pre-defined RNG classes relate to those destribb [AIS20] and [AIS31] as follows
(coarse comparisons):

Comparable to
[AIS20] or [AIS31] Comment
class

RNG
class

Physical RNG with internal tests that detect a lfota
PTG.1 AIS31, P1 failure of the entropy source and non-tolerabléstteal
defects of the internal random numbers

PTG.2 AIS31, P2 PTG.1, additionally a stochastic model of the guro
source and statistical tests of the raw random musnhb
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Comparable to

RNG [AIS20] or [AIS31] Comment
class
class
(instead of the internal random numbers)
PTG.2, additionally with cryptographic post-prodegs
PTG.3 No counterpart (hybrid PTRNG)
DRG.1 | AIS20, K2, partly K3 DRNG with forward secrecy according to [ISO18031
DRG.1 with additional backward secrecy according
DRG.2 AIS20, K3 [1S018031]
DRG.3 AIS20, K4 DRG.2 with additional enhanced lvaaid secrecy
DRG.3 with additional enhanced forward secn
DRG.4 No counterpart (hybrid DRNG)
NTG.1 No counterpart Non-physical true RNG withrepy estimation

D

) to

ecy

263 The following figures illustrate different classeSRNGs. We point out that other realizations
of these classes are possible. The pictures sh@inlnthe total failure tests, in red the online
tests and in dark green known-answer-tests.

|

Post-

processing

Internal
random
sequence

Output

random
sequence
v JV

Post-
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Output

Figure 3: Example of PTRNGSs that belong to theqeBned classes PTG.1 and PTG.2
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Figure 4: Example of a PTG.3 and NTG.1 that beldngbe pre-defined class PTG.3 and
NTG.1

264 The DRNG classes are illustrated by the followiymifes ( - state transition functio,
output function,A—}l— B - symbol for a one-way functiar the state transition function
and the extended output functipn* ):
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Figure 5: Examples of DRNGs that belong to thedqefred classes DRG.1 and DRG.2

Figure 6: Examples of DRNGs that belong to thedqefined classes DRG.3 and DRG.4
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4.2.

265

266

267

268

269

270

4.3.

271

272

4.3.1.

273

General Remarks (Exemplary applications, side-charel attacks, fault attacks)

In the description of the particular pre-defined ®RNtlasses below possible (exemplary)
cryptographic applications are mentioned that ghallivate the class definitions. We point out
that these examples are informative only. In suclinarelated real-world applications there
might be special (additional) requirements on #re@om numbers, which make it necessary or
at least advisable to select an RNG from a highHassc Similarly, possible progress in
cryptanalysis might implicate the selection of FgRNG classes in the future. The designer of
an application is responsible for the choice oappropriate RNG.

Implementation attacks, in particular side-charattdcks and fault attacks, constitute serious
threats against cryptographic implementations.diyally, also RNGs might be concerned.

(DRNGS): Although irrelevant from a cryptanalytitodical) point of view in the light of
implementation attacks (in particular, of side-amelnattacks) we recommend to use different
instantiations of a DRNG for different applicatiorsd maybe even for different tasks within
one application (e.g., random numbers remain se@etiom numbers remain unknown apart
from legitimate users, random numbers might belakgd later, random numbers are open).
Otherwise the attacker might try to perform a sslannel attack, which exploits the known
random numbers to recover the internal state, whietermines at least all future random
numbers.

(DRNG): To prevent side-channel attacks it mighté@mmendable not to keep secret parts of
the internal state constant. This would be the, ,dasenstance, for a DRNG that uses a block
cipher with constant secret key in OFB mode.

(PTG.3) + (DRG.4): Hybrid RNGs combine security gedies of both PTRNGs and DRNGs.
One may hope that the combination of both an an@lqEart and algorithmic post-processing
might also help to harden RNG implementations agaitle-channel attacks and fault attacks.

From a logical point of view statistical tests dme toutput data of a cryptographic post-
processing algorithm are pointless. However, onte®s might serve as additional security
measure that might detect fault attacks.

Class PTG.1

The class PTG.1 defines requirements for PTRNG&wimight be used to generate random
numbers for cryptographic applications, where th@dom numbers need not meet any
unpredictability properties, neither in the pastimathe future.

The required quality metric of PTG.1 does not prévilat the random numbers might be
guessed.

Security functional requirements for the RNG clas$TG.1

The functional security requirements of the claB&R are defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class PTG.1)
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FCS_RNG.1.1 The TSF shall provide physicaf® random number generator that
implements:

(PTG.1.1) A total failure test detects a total dad of the entropy source immediately
when the RNG has started. When a total failureateded, no random
numbers will be output.

(PTG.1.2) If a total failure of the entropy souroecurs while the RNG is being
operated, the RNG [selection: prevents the outfudny internal random
numbers that depend on raw random numbers generafted the total
failure occurred, generates the internal random bens with a post-
processing algorithm of class DRG.1 until the owitpf further internal
random numbers is prevented)].

(PTG.1.3) The online test detects non-tolerabletisdieal defects of the internal
random numbers. The online test is [selection:geiged externally, applied
after regular intervals, applied continuously, ajgpol upon specified internal
events]. When a defect is detected, the outputrtsfer random numbers is
prevented.

(PTG.1.4) Within one year of typical use, the piuliy that an online alarm occurs is
in the order ofLO'® or larger if the RNG works propeffy

FCS_RNG.1.2 The TSF shall provide [selectibits, octets of bits, numbers [assignment:
format of the numberfthat meet:

(PTG.1.5) Test procedure A [assignment: additiosEndard test suites] does not
distinguish the internal random numbers from outpeguences of an ideal
RNG.*

4.3.2. Application notes

274 An RNG of class PTG.1 shall generate true randomhbaus based on an entropy source. A
total breakdown of the entropy source causes zetomy for future raw random numbers.
Moreover, a failure of the digitization of the amglie signal of the post-processing algorithm
might cause defects of the internal random numbins. total failure test and the online test
shall detect those types of errors, and the TOR prevent output of random numbers of poor
quality.

275 The total failure test may detect
(i) the breakdown of the entropy source by analyzire raw random signal, or

(ii) the total failure of the entropy source indlugl the digitization by analyzing the raw
random number sequence.

?[selection:physical, non-physical true, deterministic, hyhpiysical, hybrid determinisfic
2 [assignmenttist of security capabilitids
2 [assighmenta defined quality metrjc
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276

277

278

279

280

281

The total failure test must consider the physicaigiple of the entropy source. In case (i), the
total failure test may measure the physical entiffgct. In case (i), the breakdown analysis of
the entropy source usually identifies characterigi@atterns in the raw random signal (e.g.,
constant sequences, meanders) that can be detgit&ty by a suitable test.

If a total failure of the entropy source occurstibtal failure test might need some time to detect
this failure, and the post-processing mechanismhtriglay the effect of the non-random raw

random numbers on the output random numbers. Ti® REG.1.1 clause (PTG.1) explains

the response of the RNG when a total failure of éméropy source has been detected:
preventing the output of random numbers. FCS_RNCGlhuse (PTG.1.2) addresses the time
between the occurrence and the detection of a fatale. The selection covers two types of

post-processing algorithms:

Case (i): The post-processing mechanism genenatix®al random numbers that depend only
on some fixed number of raw random signals (eltg, iternal random number might be
calculated from a raw random number sequence shsiored in a first-in, first-out memory).
After a total failure, the raw random signal losesy randomness, and the generated raw
random numbers affect the generated internal randembers in a deterministic way. After
some time, the internal random numbers are germkm@iéy from non-random raw random
numbers. No later than this point the RNG shallene the output of internal random numbers
because they hawmmpletely been generatafter a total failure of the entropy soutce

Case (ii): The internal random numbers might ppatty depend on an unlimited number of
raw random numbers (memory!), although the intestate is finite (e.g., the internal random
numbers are calculated from raw random numbersatteastored in a feedback shift register).
Therefore, the internal random numbers still depemdtruly random” raw random numbers,
which have been generated before the entropy sdwasdroken down.. The RN@enerates
output with a post-processing mechanism of clas& RRintil the RNG prevents the output of
internal random numbersyhich ensures the quality of the internal random numbdarsg the
time between occurrence and detection of a totiairéa as required by element FCS_RNG.1.1
clause (PTG.1.2).

The online test shall detect non-tolerable statistilefects of the internal random numbers. As
distinct from a total failure, these defects ugsuakn be detected only by statistical tests. The
FCS_RNG.1.1 clause (PTG.1.3) addresses the camglitioder which the online tests shall be
executed. The FCS_RNG.1.1 clause (PTG.1.4) ensoia¢the online test is sharp enough to
detect statistical defects. Theurse of one year of typical use of the Ri@efined by the use
of the TOE or by additional evidence provided by tleveloper. If the internal random numbers
pass the online test, the TOE design shall enqwaethe output random numbers meet the
quality described in (PTG.1.5).

If the tot test and / or the online test are not pathe TOE but to be implemented later as an
external security measure the applicant must suarsgiecification of the test(s), a justification
for effectiveness and a reference implementatidme Juitability of the tot test and the online
test shall be verified based on the reference imeigation. In the positive case the RNG is said
to be PTG.1 compliant under the condition thatfil@ implementation meets the specification
in the user manual (to be checked in a composakiation).

The developer may or may not assign additionaldstahtest suites (i.e. the assignment may be
empty) in the element FCS_RNG.1.2 clause (PTG.I'g element FCS_RNG.1.2 clause
(PTG.1.5) demands that the application of test gutape A and - if assigned — of additional
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4.4,

282

283

284

285

4.4.1.

standard test suites does not reject the null ingsidé “the internal random numbers were
generated by an ideal random generator”. The samérement is demanded for classes PTG.2
and DRG.1. The efforts of testing depend on thengld resistance (in the ST) against attacks
(cf. selected component of the family AVA VAN). Thevaluator may apply additional
statistical tests as penetration tests. Note thiatrequirement does not necessarily imply that
the rejection probability for the internal randomnmbers equals the rejection probability of
sequences from ideal RNGs. Moreover, even this resdth property is weaker than
Requirements PTG.3.8, DRG.2.5, DRG.3.5 and DRG.4.7.

Class PTG.2
The class PTG.2 defines requirements for RNGs d&eério generate, for example:
cryptographic keys (e.g., for block ciphers oriR8A),
random padding bits,
seeds for DRNGs of the classes DRG.1, DRG.2, DRGIRG .4, or

cryptographic applications with similar requirenger(in particular, secrecy of the
random numbers)

(cf. also par. 265). Roughly speaking, PTG.2 cantoit RNGs generate high-entropy random
numbers. These random numbers may not be pragticalistinguishable from independent

uniformly distributed random numbers (output from i@eal RNG). The entropy shall in

particular prevent successful guessing attacks.pamticular, class PTG.2 includes the
applications for class PTG.1.

The PTG.2 class specification allows that the maerandom numbers may have a small
entropy defect, e.g. due to a small bias. When tfeethe generation of ephemeral keys for
DSA signatures or ECDSA signatures, for examplpo@@ntial attacker might try to combine
information from many signatures, resp. on sevegiemeral keys. Although no concrete
attack is known to date to stay on the safe sidaeght be favourable to use a class PTG.3 RNG
as a measure of precaution. Similar consideratioit for any other applications, too, where an
attacker might be able to collect information onngpnanternal random numbers. The practical
relevance of this potential vulnerability clearlgpénds on the concrete application.

The PTG.2 class specification does not require st-jpancessing algorithm if the raw random
numbers are already good enough. However, evenittmeight be reasonable to apply a post-
processing algorithm with memory. The post-progessalgorithm might smooth a bias or
short-term dependencies. Even if it is not datajm@ssing the entropy of its internal state
might compensate entropy defects of the raw randembers provided that in the course of the
time more random raw bits are fed into the postessing algorithm than outputted by the
PTRNG.

For a PTG.2 RNG the post-processing algorithmt (#ists) may not be cryptographic. If the
post-processing algorithm belongs to class DRG&&p.reven to DRG.3, (viewed as a free-
running DRNG) this extends the reaction time upomotal failure of the entropy source

(PTG.2.2), resp. the PTRNG may even belong to ¢¥d3.3 (cf. PTG.3.6).

Security functional requirements for the RNG clasTG.2
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286 Functional security requirements of the class PT&e defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class PTG.2)

FCS_RNG.1.1 The TSF shall provide ghysical®® random number generator that
implements:

(PTG.2.1) Atotal failure test detects a total fiafl of entropy source immediately when
the RNG has started. When a total failure is deticho random numbers
will be output.

(PTG.2.2) If a total failure of the entropy souroecurs while the RNG is being
operated, the RNG [selection: prevents the outfuiny internal random
number that depends on some raw random numbers tthae been
generated after the total failure of the entropuree, generates the internal
random numbers with a post-processing algorithnelags DRG.2 as long
as its internal state entropy guarantees the claimetput entropy].

(PTG.2.3) The online test shall detect non-tolezabtatistical defects of the raw
random number sequence (i) immediately when the RaiGstarted, and
(if) while the RNG is being operated. The TSF nmastoutput any random
numbers before the power-up online test has fidisecessfully or when a
defect has been detected.

(PTG.2.4) The online test procedure shall be affectto detect non-tolerable
weaknesses of the random numbers soon.

(PTG.2.5) The online test procedure checks theityuaf the raw random number
sequence. It is triggered [selection: externallyt eegular intervals,
continuously, applied upon specified internal espnThe online test is
suitable for detecting non-tolerable statisticalfelds of the statistical
properties of the raw random numbers within an atable period of timé'

FCS_RNG.1.2 The TSF shall provide [selectibits, octets of bits, numbers [assignment:
format of the numberkthat meet:

(PTG.2.6) Test procedure A [assignment: additiosEndard test suites] does not
distinguish the internal random numbers from outpejuences of an ideal
RNG.
(PTG.2.7) The average Shannon entropy per intaaralom bit exceeds 0.997.
4.4.2. Application notes
287 The class PTG.2 includes the requirements of cRE&.1 for the security capabilities

(PTG.1.1) (PTG.1.3) and (PTG.1.4) as defined indlement FCS_RNG.1.1. It reformulates
(PTG.1.2) in the form of (PTG.2.2). The securitypahility of an online test of the internal

3 [selection:physical, non-physical true, deterministic, hyhpiaysical, hybrid determinisfic
24 [assighmenttist of security capabilitids
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random numbers is replaced by online tests of alaerandom number sequence, i.e., tests are
oriented towards the entropy source. It adds reqénts for the minimum entropy of random
numbers.

The element FCS_RNG.1.1 clause (PTG.2.2) addressmrgity capabilities that shall ensure
the quality of outputted internal random numbensvieen the occurrence and the detection of a
total failure of the entropy source. It allows thetput of some internal random numbers that
depend on some raw random numbers with zero eniftipgy post-processing algorithm can be
viewed as a DRNG of class DRGIR2.the PTRNG had worked properly before the total
breakdown of the entropy source, the entropy ofititernal state should be maximal, which
limits the maximal number of internal random nunsbitat may be outputted (PTG.2.7). Let
denote the ratio of the bit length of the interstate of the DRNG and the bit size of the internal
random numbers. Under the assumption that the DRBESappropriate mixing properties the
RNG may output at mostinternal random numbers that depend on some ragora numbers
that have been generated after the total failutbeentropy source in order to ensure sufficient
entropy of the internal random numbers. (Recall BBG.1.2 only demands a post-processing
algorithm of the weaker class DRG.1, and therecisupper bound for the outputted internal
random numbers.)

The entropy source might be affected, for instartpe,aging, tolerances of components,
environmental stress, or events like the failureaiticular components (e.g., if the PTRNG
comprises more than one entropy source). Thesersactight decrease the entropy of the raw
random signal, but might not result in total fadwf the (overall) entropy source. Such defects
shall be detected by the online test of the rawl@annumber sequence required in the element
FCS_RNG.1.1 clause (PTG.2.3).

The element FCS_RNG.1.1 requires in clause (PTa2®nline test that detects non-tolerable
statistical defects of theaw random numbersThe online test of the raw random number
sequence in (PTG.2.3) analyses the digitized ranglgnal before post-processing while online
tests of the internal random numbers in (PTG.10Bkitler the post-processed random numbers.
Note that the online tests for the raw random numiiskall be selected such that the tested
statistical properties correspond to possible @ntrdefects. This is usually not the case for
blackbox tests. The rationale for the online te$tthe raw random number sequence must be
based on stochastic models of the entropy souttee.ofiline test procedure shall consider the
statistical properties of the raw random numbehgislthe online tests are usually applied to the
raw random numbers. Note, however, that this reguent does not categorically exclude that
(in exceptional cases) the online test might opecat analogue values (e.g., to estimate the
jitter) or on the internal random numbers. Examplesume that the RNG generates iid (maybe
strongly) biased das random bits (stochastic model), and that the post-processiggri#hm
Xors non-overlapping pairs of das random bits. Tieninternal random numbers are also iid,
and the online test could be applied to the interaradom numbers as well, indirectly verifying
the quality of raw random numbers. In this scenarformation on statistical properties of the
raw random numbers (here: bias) can easily bel&t@asinto information on the raw random
numbers, and this essentially corresponds withopgtr However, even then it might be
reasonable to test the raw random numbers sinega tleviation of the distribution of the raw
random numbers implies only a significantly smatleviation in the internal random numbers,
which might be more difficult to detect.

If the tot test and / or the online test are not pathe TOE but to be implemented later as an
external security measure the applicant must suarsgtecification of the test(s), a justification
for effectiveness and a reference implementatidre Juitability of the tot test and the online
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test shall be verified based on the reference imelgation. In the positive case the RNG is said
to be PTG.2 compliant under the condition thatfiha implementation meets the specification
in the user manual (to be checked in a composdakiation).

292 If the post-processing algorithm does not reduae dkerage entropy per bit, the average
entropy per internal random bit equals at leasbtlerage entropy per raw random bit.

293 The term “power-up test” in clause (PTG.2.3) adskessthe online test of the raw random
number sequence when the RNG is started after @& flas been powered up (after being
powered off), reset, rebooted etc., or after theragon of the RNG has been stopped (e.g., to
reduce the power consumption of the TOE). If thdRRG does not apply a post-processing
algorithm (or formally: if it applies the identitpapping), the internal random numbers coincide
with the raw random signals. In this case, the sdau(PTG.2.3) and (PTG.2.5) will cover
(PTG.1.3) and (PTG.1.4). If the RNG applies a gwstessing algorithm, the raw random
signals and the internal random numbers usuallg lifferent statistical properties. If the raw
random number sequence passes the online testf dhe post-processing algorithm works
correctly, the internal random numbers will haverapriate properties (in particular, sufficient
entropy). A temporary or permanent failure in tmeplementation of the post-processing
algorithm might result in non-tolerable entropy et of the internal random numbers (at least
the post-processing algorithm does not work as @rp@ For many post-processing
algorithms, it seems hardly possible to implemeffiéctive statistical tests on the internal
random numbers, e.g., because post-processingasdinplicated dependencies between the
internal random numbers. The correctness of theefahinistic) post-processing may be
checked while the PTRNG is in operation, e.g., lknawn answer test (cf. FPT_TST.1 TSF
test).

294 The element FCS_RNG.1.2 clause (PTG.2.7) demaradgite average Shannon entropy is at
least 0.997 per internal random bit. If the rawd@mn numbers are binary-valued the entropy
may be checked by the statistical test proceduses Blescribed above. (Note that if the raw
random numbers are Markovian, i.e. if there are mgher dependencies than 1-step
dependencies, Step 1 and Step 2 of test procedindidate an entropy defect per das random
bit of less than 0.002. If the das bits are iid ¢éiméropy defect per bit does not exceed 0.0002.)
Note that the Min-entropy is the most generallylaaple entropy measure that can be used to
estimate the guesswork in vulnerability analysig,the min-entropy is difficult to quantify.

295 The developer may or may not assign additionaldeites (i.e. the assignment may be empty)
in the element FCS_RNG.1.2 clause (PTG.2.6). Temeht FCS_RNG.1.2 clause (PTG.2.6)
demands that the application of test procedure d\-ahassigned — of additional standard test
suites does not reject the null hypothesis “therimdl random numbers were generated by an
ideal random number generator”. The same requireisedemanded for classes PTG.1 and
DRG.1. The efforts of testing depend on the claimesistance (in the ST) against attacks (cf.
selected component of the family AVA_VAN). The awator may apply additional statistical
tests as penetration tests. Note that this reqeinésioes not necessarily imply that the rejection
probability for the internal random numbers equhtsrejection probability for sequences from
ideal RNGs. Moreover, even this enhanced propertweaker than Requirements PTG.3.8,
DRG.2.5, DRG.3.5 and DRG.4.7.

4.4.3. Further aspects

296 The developershall provide evidence that the entropy of the intemaldom numbers is
sufficiently large. The evidence comprises a stetibanodel (cf. subsection 2.4.1 on pp. 39)
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tailored to the TOE design and substantiated Kiststal tests. There is only one level of detail
in the description of the stochastic model, irretipe of the chosen EAL. Below this guidance
describes explicitly two evaluation methods Mett#odnd Method B, which may be applied to
PTRNGs that generate 1-bit raw random numbers.

Method A

A.1 On the basis of the stochastic model, the dgezlshows that the raw random numbers are
stationary distributed, and that there are no Smmt (long-step) dependencies, which are not
covered by the statistical tests from test prooediur

A.2 The raw random numbers pass the statistical pescedure B under all relevant
environmental conditions.

A.3 The developer verifies that the post-processilggrithm does not reduce the entropy per
bit. Alternatively, the developer provides evideticat the average entropy per internal random
number remains sufficiently large.

A.4 The internal random numbers pass the statistgsd procedure A (and other statistical
standard test suites if applied) under all releesmvironmental conditions.

Method B

B.1 On the basis of the stochastic model, the dgeslshows that the raw random numbers are
stationary distributed, and that there are no Bt (long-step) dependencies that are not
covered by the statistical tests from test prooediur

B.2 The developer verifies on the basis of thelsstic model that due to the post-processing
algorithm the entropy per internal random numbersisficiently large. Under suitable
conditions test procedure B might support this goal

B.3 The internal random numbers pass the statisgésa procedures A (and other statistical
standard test suites if applied) and test proceduBeunder all relevant environmental
conditions.

In Evaluation Method A, the raw random numbers phssstatistical test suite B under all
relevant environmental conditions. In particultie tiverage entropy per raw random number is
sufficiently large. Hence, the post-processing algm need not increase the entropy per bit.
The identity mapping is allowed, which means ‘ngtgarocessing’.

If Evaluation Method B is applied, three casespssible: (i) test suite B does implicitly verify
the entropy of the raw random numbers, and tede diis passed; (ii)_test suite B does
implicitly verify the entropy of the raw random nbars, and test suite B fails; or (iii) test suite
B cannot be applied or is not applicable to the ramdom numbers, e.g. because there is no
access to the raw random numbers or the raw ramdombers are not binary-valued.

Evaluation Method A and Evaluation Method B conesitliee case that the PTRNG generates a
single raw random bit per time unit. If the entragmyurce generates (k1) — bit raw random
numbers, additional problems might occur (e.g.,edeencies between the bits of each k-bit
raw random number, different statistical behaviofuthe particular bit traces) and thus must be
considered. The evaluation may follow the line ofaliation Method A or of Evaluation
Method B described above. Depending on the con&€RNG design, this might require the
specification of a new test suite B’, which shadl & least as effective as test suite B under the
conditions of Evaluation Method A, or of Evaluatibtethod B, respectively. The effectiveness
of the chosen test suite B’ shall be verified.

In the definition of the different evaluation metisp environmental conditions are viewed as
relevant if they either (i) belong to the specifi@shge of admissible working conditions, or (ii)
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lie outside that range but cannot reliably be detbby anti-tamper measures (e.g., by sensors)
although they may affect the behaviour of the gmtrsource.

301 Every statistical test considers only particulatistical properties. In particular, there are no
generally-applicable blackbox tests that providibée entropy estimates for random numbers.
To be recognized as effective for a positive vesifion of security properties, a statistical test
must be based on a stochastic model.

45, Class PTG.3

302 The class PTG.3 defines requirements for RNGsgthall be appropriate for any cryptographic
applications, in particular including those for PEGUnlike PTG.2 - PTRNGSs the security of
PTG.3 - PTRNGs does not only rely on one secunitghar but on two security anchors:
information-theoretical security ensured on thegitgl part of the RNGand computational
security ensured on the properties of the crypfjcapost-processing algorithm. In particular,
the internal random numbers will not show any Iniesshort term dependencies.

303 PTG.3 is the strongest class that is defined & deicument. PTG.3 conformant PTRNGs may
be used for any cryptographic application. TypiEdlG.3 applications are the generation of
ephemeral keys for DSA signatures and for ECDSA&igres, for instance.

304 Class PTG.3 demands a post-processing algorithmmeéimory that (interpreted as a DRNG) is
DRG.3-conformant (cf. chapter 4.8) even if its indata are known at some point in time. In
particular, the state transition functign and the extended output functipn* of this DRNG

are cryptographic one-way functions.
45.1. Security functional requirements for the RNG clas$?TG.3

305 Functional security requirements of the class PT&e defined by component FCS_RNG.1
with the specific operations given below.

FCS_RNG.1 Random number generation (Class PTG.3)

FCS_RNG.1.1 The TSF shall providehgbrid physicaf® random number generator that
implements:

(PTG.3.1) A total failure test detects a total fiafl of entropy source immediately when
the RNG has started. When a total failure has beetected no random
numbers will be output.

(PTG.3.2) If a total failure of the entropy souroecurs while the RNG is being
operated, the RNG [selection: prevents the outfuny internal random
number that depends on some raw random numbers tthae been
generated after the total failure of the entropyree, generates the internal
random numbers with a post-processing algorithnelags DRG.3 as long
as its internal state entropy guarantees the claimetput entropy].

(PTG.3.3) The online test shall detect non-tolezabtatistical defects of the raw
random number sequence (i) immediately when the RM@rted, and (ii)

% [selection:physical, non-physical true, deterministic, hyhpiysical, hybrid determinisfic
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while the RNG is being operated. The TSF must ogiub any random
numbers before the power-up online test and thdisgef the DRG.3 post-
processing algorithm have been finished succegstulwhen a defect has
been detected.

(PTG.3.4) The online test procedure shall be dffectto detect non-tolerable
weaknesses of the random numbers soon.

(PTG.3.5) The online test procedure checks the nawvdom number sequence. It is
triggered [selection: externally, at regular integ, continuously, upon
specified internal events]. The online test is ahl# for detecting non-
tolerable statistical defects of the statisticabperties of the raw random
numbers within an acceptable period of time.

(PTG.3.6) The algorithmic post-processing algorithmlongs to Class DRG.3 with
cryptographic state transition function and cryptaghic output function,
and the output data rate of the post-processingriigm shall not exceed
its input data rate.

FCS_RNG.1.2 The TSF shall provide [selectibits, octets of bits, numbers [assignment:
format of the numberkthat meet:

(PTG.3.7) Statistical test suites cannot practigatlistinguish the internal random
numbers from output sequences of an ideal RNG. ifiteenal random
numbers must pass test procedure A [assignmenitiawaial test suites].

(PTG.3.8) The internal random numbers shall [seétectuse PTRNG of class PTG.2
as random source for the post-processing, haveigasgent: work factor],
require [assignment: guess work]].

4.5.2. Application notes

306

307

308

The security capabilities in element FCS_RNG.ldusk (PTG.3.2) ensure the quality of the
output in the time period between the occurrenas the detection of a total failure of the
entropy source. The internal state of the postgssiog algorithm shall ensure that the
outputted internal random numbers contain sufficientropy in this time period. Clause
(PTG.3.6) ensures enhanced backward secrecy (BIG(®3)) even if the entropy source has
broken down and if the internal state is comproohise

Clauses (PTG.3.5) and (PTG.3.8) shall ensure tieagjtiality of the internal random numbers is
sufficiently large unless a noise alarm occurs.

The security capability (PTG.3.8) separates PT@#armant PTRNGs from DRG.4-

conformant DRNGs. Essentially, clauses (PTG.3.6) @rG.3.8) demand that the average
entropy (over the time) of the input data of thgoaithmic post-processing algorithm should not
be smaller than the average number of internala@nbits in the same time period; a small
entropy defect might be tolerable. Since the lnigth of the internal random numbers is usually
much larger than the bit size of the input datthefpost-processing algorithm, this requirement
might not be fulfilled in short time intervals. Hewer, the entropy of the internal state shall
compensate such time-local effects for any timeratl, i.e., the entropy of the input data shall
not be smaller than the number of internal randdsirhinus the bit length of the internal state
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310

311

312

313

314

315

of the algorithmic post-processing algorithm. Thewity capabilities (PTG.3.3) and (PTG.3.5)
ensure that the internal random numbers contairuginentropy while the PTRNG is in
operation.

A PTG.3-conformant PTRNG may be viewed as a contiposof an “inner” PTRNG with a
DRNG post-processing where the output data of TRRNG serve as input data for the DRNG,
which updates / refreshes its internal state. Theet” PTRNG itself may comprise an ‘inner’
algorithmic post-processing algorithm. In particudhe output data of the inner PTRNG need
not necessarily be raw random numbers but maydjrea algorithmically post-processed.

If we view a PTG.3-conformant PTRNG as a compasitdd an inner ‘PTRNG’ part and a

DRNG part, we may distinguish two cases: (i) theemPTRNG is PTG.2-conformant, or (ii)

the inner PTRNG is not PTG.2-conformant. For césehe RNG may principally be operated
in three modes: (a) as a PTG.3-PTRNG, (b) as a PPERNG if the output data of the

physical part are used directly, or (c) as a DRGRNG if the input sequence of the

algorithmic post-processing algorithm is ‘extendeldor case (ii), only options (a) and (c)
remain. Security requirements and functional rexognts of particular cryptographic

applications might make such a diversification niegiiul. Conformity to the particular classes
must be verified in separate evaluation proce€Sesuation results clearly may be used for all
these evaluations.

The post-processing algorithm belongs to class BRBen if the PTRNG random source has
totally broken down and an attacker knows or i dblguess its output (i.e., the input of the
post-processing algorithm). Of course, this demdhalsthe internal state of the post-processing
algorithm was unpredictable at the time of the kdesn, which is the case if the PTRNG had

worked properly for at least a short time. In tteses of a total breakdown, of course, the
PTRNG must not output more internal random bitttiee size of the internal state in bits.

Otherwise, the RNG belongs to class DRG.3 aftaritistant.

Unlike for PTG.3-conformant PTRNGs, DRG.4-confortn®@RNGs may ‘extend’ the input
data, i.e., DRG.4 conformant DRNGs may computeelargtput sequences from short input
sequences. In particular, there is no minimum @ytlmund per internal random bit (cf. chapter
4.6 for details).

The element FCS_RNG.1.2 clause (PTG.3.7) requirats dtatistical tests cannot practically
distinguish the internal random numbers from ougrguences of an ideal RNG. The feature
that statistical test suites cannptactically distinguish the RNG output from uniformly
distributed random bit sequences depends on thmetain the ST resistance against attacks
(cf. selected component of the family AVA_VAN). Tlk#ort of testing is defined by the used
test suites and the amount of test data. The deselweill provide functional tests with test suite
A and maybe other appropriate tests suites. Théuaest may additionally apply further
statistical tests as penetration tests. Theserteside tailored to the RNG design. Requirement
(PTG.3.7) is stronger than (PTG.1.5) and (PTG.2.6)

The clause (PTG.3.8) provides three methods désgrithe quality of the output. The work
factor and the guess work may be used directhénviulnerability analysis of the application
using the random number output. The selection RIBRNG of class PTG.2 as random source*
together with (PTG.3.6) allows an indirect verifioa of the output quality.

If the DRNG post-processing algorithm maps the irgata from the inner PTRNG bijectively
onto the output space, its entropy remains conslatite inner PTRNG is PTG.2-conformant,
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317

318

the (Shannon) entropy per random bit is sufficietdkge. Since PTG.2-conformant PTRNGs
generate stationary random raw sequences, the &maantropy provides an appropriate
estimate for the work factor unless the sequeneeta short, which is not the case for DRG.3-
conformant DRNGs. An example of a bijective DRGoBHormant post-processing algorithm is
a block cipher that is operated in OFB mode whieeinternal random number is given by the
whole ciphertext block. Before a new internal ramdoumber is output, a fresh random bit
string from the inner PTRNG is XORed to that pdrthe inner state of the DRNG that stores
the previous internal random number (= last ciphd)jt Then the updated part of the internal
state is encrypted and output (internal random raujnland then a one-way function is applied
to the updated internal state.

DRG.3-conformity requires a one-way state transitfanction. One-way functions usually
reduce the entropy per bit unless the length ofripat data significantly exceeds the length of
the output. One usually models one-way functionsealsations of random mappings. Section
5.4.4 investigates the effect of random mappingsumifiormly distributed input data. Output
sequences of PTG.2-conformant real-world PTRNGsatedeal, but should be close enough
to the uniform distribution so that it appears ceeble to assume that the figures from section
5.4.4 are also valid for input data from PTG.2-confant PTRNGs (see section 5.4.4 for
further details). An example of this type of postgessing algorithm is the following:
Whenever an internal random number shall be outpufresh n-bit string from the inner
PTRNG is XORed to the internal state. Then an nhégth valug(m < n) of the internal state

is output, and the internal state is updated byyapgp(another) one-way function.

If the tot test and / or the online test are nat pathe TOE but to be implemented later as an
external security measure the applicant must suarsgecification of the test(s), a justification
for effectiveness and a reference implementatidme Juitability of the tot test and the online
test shall be verified based on the reference imelgation. In the positive case the RNG is said
to be PTG.3 compliant under the condition thatfil@ implementation meets the specification
in the user manual (to be checked in a composdatkiation).

Under certain conditions class PTG.3 allows a caitpaevaluation. For example, a software
developer might use the output of a PTG.2 RNG, twhécimplemented in hardware on the

device, as input for a DRG.3 RNG with memory. I® ttomposite evaluation it has to be
checked whether all requirements that concern th&-grocessing algorithm itself and its

interaction with the PTG.2 output are fulfilled.tlfis is the case the composite RNG (PTG.2 +
DRG.3 conformant post-processing) is PTG.3 confotma

4.5.3. Further aspects

319

320

The developershall provide the evidence required in ATE_FUN.{1,2}.PB@ clause
(PTG.3.8), i.e., the developer shall provide evadethat the entropy of the internal random
numbers is sufficiently large. The evidence congwia stochastic model (cf. subsection 2.4.1
on pp. 39) tailored to the TOE design and substedi by statistical tests. There is only one
level of detail in the description of the stochastiodel, irrespective of the chosen EAL. The
stochastic model shall consider the situation leeftre application of the DRG.3 post-
processing algorithm, i.e., the input data of thestgprocessing algorithm (as for PTG.2-
conformant PTRNGSs) and the effect of this post-pssing.

For the non-post-processed data, this guidanceidescMethod A* and Method B*, which
may be applied if 1-bit raw random numbers are gerd. These evaluation methods are
related to Method A and Method B for PTG.2-PRNGs.
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Method A*

A.1 On the basis of the stochastic model the d@eslshows that the raw random numbers are
stationary distributed, and that there are no &gt (long-step) dependencies, which are not
covered by the statistical tests from test suite B.

A.2 The raw random numbers pass the statisticalstete B under all relevant environmental
conditions.

A.3 The developer verifies that the inner post-pssing algorithm (if one exists, resp. if it is
different from the identity mapping) does not reglibe entropy per bit. Alternatively, the
developer provides evidence that the average entpap internal random number remains
sufficiently large.

A.4 The internal random numbers pass the statistigsd procedure A (and other statistical
standard test suites if applied) under all releesmvironmental conditions.

Method B*

B.1 On the basis of the stochastic model the deeelshows that the raw random numbers are
stationary distributed, and that there are no 8ot (long-step) dependencies that are not
covered by the statistical tests from test suite B.

B.2 The developer verifies on the basis of thelsetic model and the inner post-processing
algorithm (if it exists, resp. if it is differentdm the identity mapping) that the average entropy
per input bit of the DRG.3-post-processing exceeaertain entropy bound (to be specified).
B.3 The internal random numbers pass the stafisist procedure A (and other statistical
standard test suites if applied) under all releesmvironmental conditions.

Method A* guarantees average of 0.997 bit Shannunopy per input bit (i.e., 7,976 bit
Shannon entropy per input octet) of the post-pmiogsalgorithm. To estimate the average
entropy per output bit, one may apply results erdoan mappings or random permutations.

Evaluation Method A* and Evaluation Method B* requthat the PTRNG generates a single
random raw bit per time unit. If the entropy sougemerates k-bit raw random numbers (k > 1),
additional problems (e.g., dependencies betweerbitseof each k-bit raw random numbers,
different statistical behaviour of the particulait braces) might occur and thus must be
considered. The evaluation may follow the line ehlaation Method A* or of Evaluation B*
described above. Depending on the concrete PTRN{@mdhis might require the specification
of a new test procedure B’, which shall be at lemseffective as test procedure B under the
conditions of Evaluation Method A* or of EvaluatioMethod B*, respectively. The
effectiveness of the chosen test procedure B’ flgadixplained.

In the definition of the different evaluation metlso environmental conditions are viewed as
relevant if they either (i) belong to the specifi@shge of admissible working conditions, or (ii)
lie outside that range but cannot reliably be dettby anti-tamper measures (e.g., by sensors)
although they may affect the behaviour of the gmtrsource.

Each statistical test considers only particulatigtteal properties. In particular, there are no
generally-applicable blackbox tests that providebée entropy estimates for random numbers.
To be recognized as effective for a positive veaifion of security properties, a statistical test
must be based on a stochastic model.

Statistical tests, which estimate the entropy ohiadom sequence, (tacitly) assume that the
sequence has specific properties. The rationalmth¢he evaluation methods A* and B* is that
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statistical tests cannot effectively be applietheinternal random numbers because the DRG.3
post-processing algorithm causes complicated depwies within the internal random number
sequence.

4.6. Class DRG.1

328 The class DRG.1 defines requirements for detertitnRNGs. It shall not be possible to
distinguish the generated random numbers from osgguences from an ideal RNG by simple
statistical blackbox tests. DRG.1 conformant DRN@svide forward secrecy.

329 An RNG of class DRG.1 might be used for applicaidmat need fresh data that are distinct
from previously-generated data with high probajilite.g., to generate challenges in
cryptographic protocols or initialization vectom block ciphers in special modes of operation,
provided that previous random numbers need notdteqied. DRG.1-conformant DRNGs may
be used for zero-knowledge proofs (cf. par. 265).

4.6.1. Security functional requirements for the RNG clasPDRG.1

330 Functional security requirements of class DRG.1da#ned by component FCS_RNG.1 with
specific operations as given below.

FCS_RNG.1 Random number generation (Class DRG.1)

FCS_RNG.1.1 The TSF shall providedaterministi¢® random number generator that
implements:

(DRG.1.1) If initialized with a random seed [selent using a PTRNG of class PTG.2
as random source, using a PTRNG of class PTG.&adam source, using
an NPTRNG of class NTG.1 [assignment: other requinets for seeding]],
the internal state of the RNG shall [selection: édassignment: amount of
entropy], have [assignment: work factor], requir@asgignment: guess
worK]].

(DRG.1.2) The RNG provides forward secréty.
FCS_RNG.1.2 The TSF shall provide random numbextsrtieet:

(DRG.1.3) The RNG, initialized with a random seads[gnment: requirements for
seeding], generates output for which [assignmenimber of strings]
strings of bit length 128 are mutually differenttwprobability [assignment:
probability].

(DRG.1.4) Test procedure A [assignment: additiosEndard test suites] does not
practically distinguish the random numbers frompautsequences of ideal
RNGs?®

4.6.2. Application notes

% [selection:physical, non-physical true, deterministic, hyhpiysical, hybrid determinisfic
%" [fassignmenttist of security capabilitids
8 [assighmenta defined quality metrjc
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The vulnerability analysis shall shahat an attacker is not able to guess the intestas of the
DRNG with the attack potential that is claimed metST. The value assigned in clause
(DRG.1.1)shall meet the attack potential identified in the vulislity analysis component.
The entropy of the initial internal state is an @ppound of the entropy of the generated random
number sequence. The entropy of the internal statiedecrease over the lifetime of the DRNG
instantiation. The internal state of the DRNBall contain sufficient entropy to prevent
successful guessing attacks within the lifetim¢éhef DRNG instantiation. Table 12 gives lower
entropy bounds for the internal state. Its bit thngust at least equal the minimal entropy
bound.

It is natural to generate the seed of a DRNG wiT&.2- or PTG.3-conformant PTRNG. If the

internal state of the DRNG is initialized in thisayy and if the internal state is at least 25%
larger (in bits) than the Min-entropy bounds givanTable 12, an explicit assessment of the
Min-entropy is not necessary. This is justified thye fact that PTG.2-conformant PTRNGs

generate stationary output sequences with largar@imaentropy, which ensures a large work
factor. Similarly, PTG.3-conformant PTRNGs also g@te high-entropy random numbers (see
also the application notes for class PTG.3). Watpaut that tighter entropy bounds for PTG.2
and PTG.3 than the generic 25% margin (allowingllemanternal states) should be possible in
most cases but require justification (cf. stocltastodel).

Table 12: Attack potential, Min-entropy, and recoemued length of the internal state

Component of the vulnerability analysis Required-mi Recommendeg
entropy of the length of the
CC version 2.3 CC version 3.1 internal state internal state
AVA_VAN.1, 2 3 40 bit 3 80 bit
(basic)
AVA_SOF.1,| AVA_VLAZ2 AVA_VAN.3 3 48 bit 3 96 bit
low (low) (enhanced basig)
AVA_SOF.1,| AVA_VLA3 AVA_VAN.4 3 64 bit 3 128 hit
medium (moderate) (moderate)
AVA_SOF.1,| AVA_VLA4 AVA_VAN.5 3 100 bit 3 200 bit
high (high) (high)

The (Min-)entropy of the internal state clearly deg@s on the initialization procedure with a
random seed, but also on the state transition ifm¢t and possibly publicly known input. If
the state transition function is bijective (i.&=/ (S,i) for each publicly known inpuit), it
maintains the entropy of the internal state. If #tate transition function behaves like a
randomly-selected mapping, it will reduce the numbg possible internal states for some
observed public input data(i.e. ]/ (S,i)| < |ﬂ ), thus reducing the entropy of the interstalte

(cf. [FIOd89] for details about statistics of randonappings). The publicly-known input does
not increase the overall entropy of the system,ibuatight influence the process of entropy
reduction of the internal state over time and nmatka&cks more difficult.

The security capability (DRG.1.2) forward secrecgams the following: subsequent (future)
values cannot be determined or guessed with noligitdg probability from current or
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336

previous output values [ISO18031]. In particuldre tdesign of the DRNG shall prevent a
successful guess the internal state, allowing teutation of future output. The forward
secrecy capability requires that the internal skesie sufficient entropy to prevent guessing as
well as the confidentiality of the current interrsthte is protected by the design of the DRNG
(e.g., one-way extended output function) and thmursly architecture of the TSF (cf. self-
protection accessed in ADV_ARC).

The security capability (DRG.1.3) requires the DRiMGgenerate mutually different pseudo-
random numbers. The first assignment in the eleff€&@& RNG.1.2 describes the requirements
on the seeding procedure (e.g., the entropy ofsteal, how many random numbers can be
generated between two seeding procedures). UndeasBumption, clause (DRG.1.3) defines
the capability of the DRNG to generate an assignadber (let's sak) of fresh random strings
with given length of 128 bit being mutually diffettewith at least the defined probability (let's
sayl- e, i.e. € is the probability of at least one coincidencéthe DRNG generates shorter
output values (random numbers) several consecwiidput values are concatenated and, if
necessary, these joint random bit strings are ¢utatber 128 bits. The selection of the
parameters andKdepends on the intended application of the DRN€&riged in the guidance
documentation:

the requirements for seeding shall fit to the idEshuse cases, and

during the lifetime of the DRNG instantiation (j.during the time between two seeding
processes) the DRNG must not produce more randesnthéin the product of the
assigned number of output strings by their bit length.

The assigned number of strings, string length is, @nd probability shall allow to provide

evidence demonstrating that this requirement isilled. The parameters assigned in the
element FCS_RNG.1.1 shall meet the attack potemt@idtified in the vulnerability analysis

component.

Table 13 provides necessary conditions to resiatls, which are based on the repetition of
random strings generated by the RNG and are eapleitin the intended environment with the
identified attack potential. The TOE might be vultde if the RNG is used for purposes that
require other properties of the RNG. In this cadbe, developer shall consider an RNG with
additional security features, like class DRG.2 higgher.
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Table 13: Requirements for the parameters in (DRBdepending on claimed attack potential

Component of the vulnerability analysis ParameteK denotes the
_ number of output strings that
CC version 2.3 CCversion 3.1 | shall be mutually different wit
probabilityL B K
AVA VANJ{1, 2} k>2" ande<2®
(basic)
AVA_SOF.1,| AVA _VLA.2 AVA_VAN.3 k>29 ande< 2
low (low) (enhanced basic
AVA_SOF.1,| AVA VLA3 AVA_VAN.4 k>2% ande<2 ™2
medium (moderate) (moderate)
AVA_SOF.1,| AVA VLAA4 AVA_VAN.5 k>2* ande<2'®
high (high) (high)

For an ideal RNG the probability for at least omdligion within the first ~ @Hbit output
strings is approximately - exp(— k? /229). The expected number of bit strings until thetfirs

collision can be approximated kyjjp 2°*° (cf. formulae (30) and (31)).

The developer may or may not assign additionaldstah test suites (i.e. the assignment is
empty) in the element FCS_RNG.1.2 clause (DRG.THg. effort of testing to demonstrate that
test procedure A and the assigned test suites toractically distinguish the RNG output from
uniformly distributed random bit sequences depeamdthe resistance against attacks as claimed
in the ST (cf. selected component of the family AWAAN). The quality metric (DRG.1.4) is
different from (PTG.1.5):

the class PTG.1 generatiese random numbers, which cannot be distinguished from
ideal random numbers by tests with the test praseduand - if assigned in clause
(PTG.1.5) — with the additional standard test silite

the DRG.1 generateteterministic random numbers, but they cannot be distinguished
from ideal random numbers by tests with the testcgdure A and - if assigned in
clause (DRG.1.4) - with the additional standard seftes.

The DRNG gets its initial random state from a ranboselected seed. The most straight-
forward methods are to use the seed as the imtainal state or to apply the state transition
function to the seed. The output string from thédtidh internal state is part of the
deterministically-generated output sequence. Th®py of the output string (and, therefore, of
the random numbers generated) cannot be greaterthkaentropy of the seed. Depending on
the seeding procedure of the DRNG, the tests guiedto one or more output strings.

4.6.3. Further aspects

339

In many cases it may be practically infeasiblefgec#fy the distribution pof the first internal
state. It suffices to specify a set of distribuidhat contains ff all elements of this set fulfil
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the requirements of class DRG.1. Example: The se¢ebpy exceeds a certain lower entropy
bound, e.g. because the seed has been generateirwiRNG that is conformant to class
PTG.2, PTG.3 or NTG.1. The security architecturescdption shall describe the secure
initialization process of the RNG.

4.7. Class DRG.2

340 The class DRG.2 defines requirements for detertienRNGs. It shall not be possible to
distinguish the generated random numbers from ouspguences from an ideal RNG by
statistical tests, and the generated random nunsiegrsence shall have at least some minimum
amount of Min-entropy (contained in the seed), Badkward secrecy is ensured. The class
DRG.2 includes the properties of class DRG.1.

341 RNGs of class DRG.2 may be used for the generatiaryptographic keys and parameters,
pseudo-random padding bits, etc. (cf. par. 265 T8F protects the internal state of the RNG
from being compromised.

4.7.1. Security functional requirements for the RNG clasPDRG.2

342 Functional security requirements of the class DR&g defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class DRG.2)

FCS_RNG.1.1 The TSF shall providedaterministi¢® random number generator that
implements:

(DRG.2.1) If initialized with a random seed [selent using a PTRNG of class PTG.2
as random source, using a PTRNG of class PTG.&adam source, using
an NPTRNG of class NTG.1 [assignment: other requinets for seeding]],
the internal state of the RNG shall [selection: éddassignment: amount of
entropy], have [assignment: work factor], requir@asgignment: guess
worK]].

(DRG.2.2) The RNG provides forward secrecy.
(DRG.2.3) The RNG provides backward secr&cy.
FCS _RNG.1.2 The TSF shall provide random numbextsnieet:

(DRG.2.4) The RNG, initialized with a random seads[gnment: requirements for
seeding], generates output for which [assignmenimber of strings]
strings of bit length 128 are mutually differenttwprobability [assignment:
probability].

(DRG.2.5) Statistical test suites cannot practigadlistinguish the random numbers
from output sequences of an ideal RNG. The randanbers must pass test
procedure A [assignment: additional test suité%].

# [selection:physical, non-physical true, deterministic, hyhpiaysical, hybrid determinisfic
% [assighmenttist of security capabilitids
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4.7.2. Application notes

343

344

345

346

347

Class DRG.2 includes the requirements of class RR@. the security capability (DRG1.1)

and the quality of the random numbers, (DRG.1.2) @RG.1.3). The application notes for
class DRG.1 are valid for class DRG.2, as well. TARG.2.4) parameters must meet the
conditions in Table 13.

The class DRG.2 requires assigned quality of imderstate in (DRG.2.1). The clauses
(DRG.2.2) and (DRG.2.3) require forward and backixsecrecy according to [ISO18031], i.e.,
that unknown previous or future output values cafmgodetermined from known output values
(random numbers). The developer should select ptagyaphic function for the one-way
extended output function and should consider (butat requested to choose) a cryptographic
one-way function for the state transition functias,well. The whole internal state is viewed as
input, including cryptographic keys. Hence, keyadpbdbions, typically coming from strong
block ciphers, also count as one-way functionss@ttion 5.3 for details).

If the DRNG is intended for the generation of cographic keys, the entropy in the element
FCS_RNG.1.1 clause (DRG.2.1), should meet the Bedevel of the cryptographic algorithm.

If no cryptographic weaknesses are known, the #gcl@vel of a symmetric cryptographic
algorithm is assumed to be equal to its key lerfgtih.example, if the assignment in the element
FCS_RNG.1.1 clause (DRG.2.1) assi§n$28 bit Min-entropy to its internal state, the D&N
may be used to generate AES-128 bits. If the ialestate contains less entropy, the AES key
generation by means of such a DRNG might be vieagd potential vulnerability of the
cryptosystem.

The element FCS_RNG.1.2, clause (DRG.2.5), requirasstatistical tests cannptactically
distinguish the random numbers from output sequeatan ideal RNG. The effort of testing in
order to demonstrate that the statistical tesesuiinnot practically distinguish the RNG output
from uniformly distributed random bit sequencesead&fs on the resistance against attacks as
claimed in the ST (cf. selected component of thmilfaAVA VAN). The effort of testing is
defined by the used test suites and the amounesif data. The developer shall provide
functional tests with test procedure A and mayleoappropriate tests suites or specific tests
that are tailored to the particular DRNG. The eatdu may provide additional statistical test as
penetration tests. Of course, clause (DRG.2.5uéeed ‘unfair’ tests that exploit the knowledge
of the given internal state.

Note that the one-way property of the output fuorctis a necessary condition for forward
secrecy, but not a sufficient condition for gooditistical properties of the DRNG output. For
example, if the DRNG outputs the hash value ofitibernal state, the output is expected to be
indistinguishable from the output of an ideal RNfathe DRNG output function concatenates
statistically weak strings (e.g., a sequence nurobére output) to this hash values, this might
no longer be true.

4.7.3. Further aspects

348

In many cases it may be practically infeasiblegecsy the distribution p of the first internal
state. It suffices to specify a set of distribuidhat contains gif all elements of this set fulfil
the requirements of class DRG.2. Example: The se#tpy exceeds a certain lower entropy
bound, e.g. because the seed has been generatecrwiRNG that is conformant to class

%1 [assighmenta defined quality metrc
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PTG.2, PTG.3 or NTG.1. The security architecturescdption shall describe the secure
initialization process of the RNG.

4.8. Class DRG.3

349 The class DRG.3 defines requirements for detertitnRNGs. It shall not be possible to
distinguish the generated random numbers from outpquences from an ideal RNG by
statistical tests, and the generated random nunsiegrsence shall have at least some minimum
amount of Min-entropy (contained in the seed), enldanced backward secrecy is ensured. The
class DRG.3 includes the requirements of class RRG.

350 RNGs of class DRG.3 might be used for the genaraifocryptographic keys and parameters,
pseudo-random padding bits, etc. (cf. par. 265y Aompromise of the internal state of the
DRNG shall be detected, and re-seeding shall bereed before further use of the RNG.

4.8.1. Security functional requirements for the RNG clasPDRG.3

351 Functional security requirements of the class DR&e defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class DRG.3)

FCS_RNG.1.1 The TSF shall providedaterministi®® random number generator that
implements:

(DRG.3.1) If initialized with a random seed [selent using a PTRNG of class PTG.2
as random source, using a PTRNG of class PTG.Zadam source, using
an NPTRNG of class NTG.1 [assignment: other requinets for seeding]],
the internal state of the RNG shall [selection: éddassignment: amount of
entropy], have [assignment: work factor], requiraspignment: guess
worK]].

(DRG.3.2) The RNG provides forward secrecy.

(DRG.3.3) The RNG provides backward secrecy evémeifcurrent internal state is
known?2®

FCS_RNG.1.2 The TSF shall provide random numbextsrtieet:

(DRG.3.4) The RNG, initialized with a random seads[gnment: requirements for
seeding], generates output for which [assignmenimber of strings]
strings of bit length 128 are mutually differentiwprobability [assignment:
probability].

(DRG.3.5) Statistical test suites cannot practigadlistinguish the random numbers
from output sequences of an ideal RNG. The randanbers must pass test
procedure A [assignment: additional test suit&s].

2 [selection:physical, non-physical true, deterministic, hyhpiaysical, hybrid determinisfic
%3 [assighmenttist of security capabilitids
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4.8.2. Application notes

352

353

354

The class DRG.3 includes the requirements of claB$.2 for the security capabilities
(DRG.2.1), (DRG.2.2), and (DRG.2.3), and the guatitetrics in (DRG.2.4) and (DRG.2.5).
The application notes for class DRG.2 are valid foe class DRG.3 as well. It adds
requirements for security capabilities referringgetdhanced backward secrecy in (DRG.3.3).

While (DRG.2.2) and (DRG.2.3) require forward arathward secrecy (i.e., unknown output
value cannot be determined from known output vglube security capabilities (DRG.3.2) and
(DRG.3.3) additionally require enhanced backwardtesgy. This means that previous output
values cannot even be determined with knowledghefcurrent internal state and current and
future output values. Enhanced backward secrecitnhig relevant, for instance, for software
implementations of a DRNG when the internal state heen compromised while all random
numbers generated in the past shall remain setet ¢ryptographic keys).

Clause (DRG.3.3) essentially requires a cryptograiate transition function. DRG.3-
conformant designs with non-cryptographic outpubctions may exist. However, it is
recommended to apply a cryptographic output functio

4.8.3. Further aspects

355

4.9.

356

357

4.9.1.

358

In many cases it may be practically infeasiblegecsy the distribution p of the first internal
state. It suffices to specify a set of distribuidhat contains fif all elements of this set fulfil
the requirements of class DRG.3. Example: The se¢ebpy exceeds a certain lower entropy
bound, e.g. because the seed has been generatecrwiRNG that is conformant to class
PTG.2, PTG.3 or NTG.1. The security architecturescdption shall describe the secure
initialization process of the RNG.

Class DRG.4

Class DRG.4 defines requirements for hybrid deteistic RNGs that primarily rely on the

security imposed by computational-complexity, whighenhanced’ by additional entropy from
a physical true RNG. RNGs of class DRG.4 clearly rba used for the same cryptographic
applications as DRG.3-conformant DRNGs, and adutily for applications that require

enhanced forward secrecy.

Class DRG.4 is based on class DRG.3 but may noamsxternal source of randomness for the
seeding process. RNGs of class DRG.4 contain @nniit source of randomness for seeding
and reseeding, resp. seed-update (to ensure fosgardcy).

Security functional requirements for the RNG clasDRG.4

Functional security requirements of the class DR&#! defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class DRG.4)

% [assighmenta defined quality metr]c
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FCS_RNG.1.1 The TSF shall providehgbrid deterministi® random number generator
that implements:

(DRG.4.1) The internal state of the RNG shall [sete: use PTRNG of class PTG.2
as random source, have [assignment: work factogfjuire [assignment:
guess work]].

(DRG.4.2) The RNG provides forward secrecy.

(DRG.4.3) The RNG provides backward secrecy evémeifcurrent internal state is
known.

(DRG.4.4) The RNG provideenhanced forward secrecy [selection: on demand, on
condition [assignment: condition], after [assignnietme]].

(DRG.4.5) The internal state of the RNG is seededrb[selection: internal entropy
source, PTRNG of class PTG.2, PTRNG of class PTGtgr selection]]*

FCS_RNG.1.2 The TSF shall provide random numbextsrtieet:

(DRG.4.6) The RNG generates output for which [assent: number of strings]
strings of bit length 128 are mutually differenttwprobability [assignment:
probability].

(DRG.4.7) Statistical test suites cannot practigadlistinguish the random numbers
from output sequences of an ideal RNG. The randombers must pass test
procedure A [assignment: additional test suit&s].

4.9.2. Application notes

359

360

361

Class DRG.4 includes the requirements of class BR@.the security capabilities (DRG.3.1)
and (DRG.3.3) and the quality metrics of (DRG.3a#a) (DRG.3.5). The assignment in clause
(DRG.4.1) should meet the conditions presentedabld 13 (cf. also the application notes for
DRG.2). The assignment in clause (DRG.4.6) shoukktnthe conditions of Table 13.
(DRG.4.1) and (DRG.4.6) do not depend on an extarnaopy source because the RNG is
seeded by the internal random source identifieDRG.4.5). Under this consideration, the
application notes for class DRG.3 are applicabtéle class DRG.4.

DRG.4 includes the forward secrecy according t@®fI8031], i.e., subsequent (future) values
cannot be determined from current or previous dutlues, and adds requirements for
enhanced forward secrecy (DRG.4.4), i.e., afteridestified event or time, the subsequent
(future) output values cannot be determined fromezu or previous output values, even if the
current internal state is compromised.

The selection in FCS_RNG.1.1 clause (DRG.4.4) dépeon the implementation of the
reseeding process, resp. of seed update proceeasTOE may provide forward secrecy on
demand, e.g., if the RNG is used for the generatibsensitive cryptographic keys like a

% [selection:physical, non-physical true, deterministic, hyhpiysical, hybrid determinisfic
% [assignmenttist of security capabilitids
37 [assighmenta defined quality metr]c
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signature-creation key in a smart card. The TOE prayide forward secrecy on condition or
after time, e.g., if the RNG gets continuously frestropy from the internal entropy source.
The assignments shall consider the seeding proeedht the entropy, which is provided by the
internal physical true RNG.

362 The security capability of forward secrecy in (DR@) requires fresh entropy that is provided
by the internal source of randomness for reseedingeed-updating the internal state. If
“internal entropy source”’is selected in clause (DRG.4.5), the RNG shall lemgnt
mechanisms (entropy estimator) to ensure that titernial entropy source has provided
sufficient entropy to ensure forward secrecy. A boration of an online test of the internal
entropy source and the condition selected in (DRIp.fhay ensure a (suitably large) lower
entropy bound. If physical true RNG of class PTG @ “physical true RNG of class PTGI8
selected, these tests are required as securitpitiipa of the PTG class (cf. to class definition
above). Note that the selection in clauses (PTgdnt (PTG.4.5) shall be consistent if an
internal entropy source is used for seeding.

363 The (first) seeding of the internal state mightdome within a personalization process with an
external entropy source. This ensures that thenakstate is unknown from the beginning even
if forward secrecy is assured only on demand antidffirst application does not apply for
forward secrecy.

4.9.3. Further aspects

364 In many cases it may be practically infeasiblefgec#fy the distribution pof the first internal
state. It suffices to specify a set of distribuidhat contains fif all elements of this set fulfil
the requirements of class DRG.4. Example: The se¢ebpy exceeds a certain lower entropy
bound, e.g. because the seed has been generdteahviRNG that is conformant to class PTG.2
or PTG.3. The security architecture descriptiorlstescribe the secure initialization process of
the RNG.

365 The security architecture must protect the intestate of a DRNG as one aspect of self-
protection. If the internal state has been compsethibackward secrecy DRG.4.3 ensures the
secrecy of all previous random numbers while eabdriorward secrecy DRG.4.4 ensures the
secrecy of the random numbers that will be gendrafter the next reseeding, resp. the next
seed update. However, if an attacker knows theentiternal state he may calculate all output
values that are generated before the next reseadsm the next seed update.

4.10. Class NTG.1

366 The class NTG.1 defines requirements for non-playdime RNGs that rely on information-
theoretical security (similar as physical RNGs) bsg external input signals as entropy source.
Additionally, a suitable cryptographic post-proéegsalgorithm shall provide a second security
anchor.

4.10.1. Security functional requirements for the NPTRNG class NTG.1

367 Functional security requirements of the class NT&eldefined by the component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class NTG.1)
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FCS_RNG.1.1 The TSF shall providean-physical tru& random number generator that
implements:

(NTG.1.1) The RNG shall test the external inputadatovided by a non-physical
entropy source in order to estimate the entropy emdetect non-tolerable
statistical defects under the condition [assignmergquirements for
NPTRNG operation].

(NTG.1.2) The internal state of the RNG shall hatvieast [assignment: Min-entropy].
The RNG shall prevent any output of random numbati the conditions
for seeding are fulfilled.

(NTG.1.3) The RNG provides backward secrecy evdreiturrent internal state and
the previously used data for reseeding, resp. dedsupdate, are knowit.

FCS _RNG.1.2 The TSF shall provide random numbextsnieet:

(NTG.1.4) The RNG generates output for which [assnt: number of strings]
strings of bit length 128 are mutually differentiwprobability [assignment:
probability].

(NTG.1.5) Statistical test suites cannot practigatlistinguish the internal random
numbers from output sequences of an ideal RNG. ifiteenal random
numbers must pass test procedure A [assignmenitiauial test suites].

(NTG.1.6) The average Shannon entropy per intaarailom bit exceeds 0.997.
4.10.2. Application notes
368 A non-physical true RNG comprises three parts:

the input pre-computation block, which computesitipait for the internal DRNG from
several external input signals provided by (ususdlyeral) entropy sources,

the entropy pool, which collects entropy and corapuhe output,

the control block, which prevents the output ofd@am numbers until the RNG has
sufficient entropy to ensure the randomness obtliput.

369 The class NTG.1 combines security capabilitiesedédninistic RNGs and security capabilities
similar to those of physical true RNGs. By clausg G.1.3) the entropy pool with its updating
mechanism and output function (viewed as a DRN®RS.3-conformant.

370 The security capability (NTG.1.1) checks the exaéinput signals from the entropy sources
with regard to total failure and non-tolerable weedses. Usually, an ‘entropy counter’
(applying heuristic rules) is kept to provide pldigy that enough fresh entropy in mixed up
with the current internal state. The entropy coumtuces the (estimated) entropy of the
internal state byn whenevem bits are output. If the value of the entropy ceuris smaller

% [selection:physical, non-physical true, deterministic, hyhpiysical, hybrid determinisfic
%9 [assignmenttist of security capabilitids
0 [assignmenta defined quality metr]c
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than m the output of an m-bit string is prohibit€he says the input is “rated for entropy
estimation”.

371 Online tests for NPTRNGs, however, will usuallyussy different from online tests for classes
PTG.2 or PTG.3 because locally the input data BTRNGs may provide only low entropy;
they might be biased or strongly dependent. Itgsally impossible to formulate a precise
stochastic model for input data of NPTRNGSs.

372 The security capability (NTG.1.2) is the same aR@X2.4). The security capability (NTG.1.3)

of enhanced backward secrecy is the same as (DRGBhe class NTG.1 includes the
requirements for the quality of the random numi§BiRG.1.3), (DRG.2.5), and (PTG.2.7).
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5. Examples

373 This chapter discusses several examples thatilhstitate the theoretical concepts, which have
been explained in the previous chapters.

5.1. Guesswork for binomial distributed data

374 In chapter 2.3.2 we introduced the concept of guwemk. The next example shows how to
calculate the guess work for a specific scenario..

Example I Guess work for vectors with independent biasésl bi

375 Assume that the attacker guesses realizations ranpivectors X = (X, X,, , X,) with
independent component;, P{X =1 =p P{X =0=1- p i1,2, n .Then

P{X =D} = g™ 1 - p~"® (17)

with b =(b,b, ,H)71{0,}", while h(b) denotes the AmING weight of b . For
p > 0.5, probability (17) increases with theAMMING weight. One clearly begins with the

guessl consisting of n ones, then one checks aibreewith FAMMING weight n-1, all vectors
with HAMMING weight n-2, etc. until the searched vector has lfeend. In the least favourable

case, we must chedd, N =2",  vectors.
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p=0.55

||b-ul|

JJN///

Figure 7: Probabilities of vectors of length n =10

The term |b- u| quantifies the “advantage” over the umifadistribution one has when

considering all vectors that are assumed with giliba larger than2™" . Forp>0.5 we
define

_ plo@- p)i+ 192
lg(x- p)- lgp

i.e., k is the down-rounded solution x of the emmat2 " = p*(1- p)* *. From this, one
immediately obtains the inequations

pk >(1 _ p)n-k £2 n £ pkl >(1 _p)n-kl'
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In our example

k= 1019049+ 192 _ ,0np19-
I9(0.45)- 1g(0.55)

0.55 x0.45 » 0.000928701Z "2 » 0.0009765625 0.%550.4:0.00113507

p=0.55

0.5

bof of
Wy N2

Figure 8: Success probability (p = 0.55; 10)

376 The Figure 8 shows the success probability as etiim of the number of vectors that have
already been checked. The dotted line represemtsstitcess probability for the uniform

distribution, which has work facta?" *

n
It is well known thatP{h(X) = § = ‘ F(@- p™* (binomial distribution). Thetatistics

program R may be used to evaluate the above forfoutzoncrete parameters:

dbinontk,n,p calculatesP{h( X) = § = E gf@a- pm«
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pbinorm(m,n,p calculates the cumulative distribution function

PINCOET = ' pa- o

m o
pbinor(m,n,p,lower.tail=F calculatesP{ h( X) > nh =1- ‘ (- prk
k=0

gbinon{g,n,p calculates the quantile function, given byn{m‘ P{ h( X) £ n}u 3 §|

wherek and m are vectors of quantils size denotes the number of observations (in our
examplen), andprob stands for a vector of probabilities (in our exsenp).

377 Alternatively, we may apply the binomial distribanito the number of 0’s instead of applying it
to the number of 1's. Note that we begin with atgethat contains no 0, etc.. For 10 andp=
1-0.55 = 0.45 we get

pbinon(3,10,0.45) = 0.2660379pinon{4,10,0.45) = 0.5044046
pbinon(3,10,0.5)*(2"10) = 176 (i.e number of vectors witximum 3 times “0”)
Each vector with 4 times “0” has a probability 6f45)*(0.55°) = 0.001135079.
(0.5-pbinom(3,10,0.45))/((0.45(0.55%) = 206.1196
Indeed we get
pbinon(3,10,0.45)+206*(0.45*(0.55°) = 0.4998643
pbinon(3,10,0.45)+207*(0.49*(0.55°) = 0.5009994

Finally

W, . = pbinon(3,10,0.5) 2" pObTS?Tésélgo’O"E’) - 38,

5.2.  Contingency tables
Example 2 Contingency table 2x4

378 Assume that one observes two sequences of 400semedt compiles contingency tables as
shown below. Applying the build in B( test functionchisg.test, one obtains results as
given in the two tableg3 degrees of freedom):

Observed data, case 1

“ Thea-quantil of the random variable is the valygtipat P{ XE pa} =a.
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0 1 2 3 Sum of rows
0 41 40 51 50 182
1 41 62 54 61 218
Sum of column 82 102 105 111 Sum in general: 400
R script:
count_tabl <- matrix(c(41,41,40,62,51,54,50,61),nro w=2,ncol=4)

[1][.2] [.3] [4]

[1,] 41 40 51 50

[2,] 41 62 54 61

count_tabl; chisqg.test(count_tabl, correct=TRUE)
Pearson's Chi-squared test

data: count_tabl

X-squared = 2.7028, df = 3, p-value = 0.4398

The chi-squared = 2.7028 and the p-value = 0.48B8.test does not reject the Null hypothesis
on independence.

Observed data, case 2

0 1 2 3 Sum of rows
0 61 59 61 34 215
1 44 36 46 59 185
Sum of column 105 95 107 93 Sum in general: 400
R script:
count_tab2 <- matrix(c(61,44,59,36,61,46,34,59),nro w=2,ncol=4)

[1][2] [.3] [4]

[1,]61 59 61 34

[2,] 44 36 46 59

count_tab2; chisqg.test(count_tab2, correct=TRUE)
Pearson's Chi-squared test

data: count_tab2

X-squared = 14.9783, df = 3, p-value = 0.001835

The chi-squared = 14.9783 and the p-value = 0.0R18Be test rejects the Null hypothesis on
independence because the p-value is less than 0.01.

Example 3 Contingency table 2x2
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379 For testing the 1bit-to-1bit dependency (ie5 y=1  )nans of 2 2 -contingency table,
one may calculate the power of the test.

Frequencies Probabilities

0 1 0 1

0 Moo | Moa | Mo | Poo = P{( B, B) = (OO)} Por = P{( B.. B)= (01)} Po. = P{ B

0}

Lo | n | n | po=P{(B.., B)=(0} | p.,=P{(B.,, B)=(1} [ p. =P{B.,=1

Ne|n | n po=P{B =0} p.=P{B=1

Since the process is assumed to be statior@agys P, = Py + Poy par p, = Pyt P
Suppose that the consecutive bits are not indepgnde, thatp,, * p,;, . The power of the test
b is the probability that the test rejects the Nwlpothesis if it is false. This depends on the
bias, i.e.,p, = p,; andp,:= p,; , the number of observations ,thadorobability of error

type 1, i.e., the level of significance . The R dtion power.prop.test allows the
calculation of any of the parameters p, p, @, ,andfthd others are given. Exactly one

of the parameterss p, p, @ , andl must be passed d4 Nahd this parameter is
determined from the others.

Example 4 Calculation of the power of 2 2 -contingency tatielst
380 We calculate the power of 2 2 -contingency table test

power.prop.test(p1=0.495,p2=0.505,sig.level=0.05,n= 70000)
Two-sample comparison of proportions power calculat ion

n = 70000

pl = 0.495

p2 = 0.505

sig.level = 0.05

power = 0.9626076

alternative = two.sided

NOTE: n is number in *each* group

Calculation of the number of necessary observations
power.prop.test(p1=0.495,p2=0.505,sig.level=0.01,po wer=0.99)

Two-sample comparison of proportions power calculat ion
n=120151

pl = 0.495

p2 = 0.505

sig.level = 0.01

power = 0.01
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alternative = two.sided
NOTE: n is number in *each* group.

381 The following script for R is an example showingashto analyse binary data for dependencies
between consecutive bits. Note that this examph@i®ptimized code.

# contingency table analysis of bit patterns in byt e sequences
# bits are enumerated for O to 7, least significant bit is 0-bit
# pattern is sequence of bit numbers, e.g. 0, 2 and 3

# definition of helping function
byte2bit <- matrix(rep(0,8*256),ncol=256)
for (iin 1:8)
{
b <- 27(i-1)
for (j in 1:256) byte2bit[i,j] <- ((j-1)%/%b)%%2
}
# function fbyte2bit(x,i) generates an array of bit s, where
# fbyte2bit(x,i) ist bit i in byte x
fbyte2bit = function(x,i)
{
if (0 <= min(x)) & (max(x) <=255)) y <- byte2hit [i(+1,x+1] else y <- NA

return(y)

# definition of parameters

setwd("D:\\test") # put the working d irectory here
data_file_name <- "random.bin" # put the data file name here
data_length <- file.info(data_file_name)$size # | ength of data in bytes
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first_pattern <- ¢(0,2,3) # example of first bit pattern to test

second_pattern <- ¢(5,6,7)  # example of second bit pattern to test

# reading test byte stream

byte sequence<-readBin(data_file_name,integer(),siz e=1,n=data_length,
signed=FALSE)

# calculate vector of byte values with selected pat tern

first_pattern_vector <-
(2nfirst_pattern)%*%fbyte2bit(byte _sequence,first_p attern)

second_pattern_vector <-
(2”second_pattern)%*%fbyte2bit(byte_sequence,second _pattern)
(chisq.test(table(first_pattern_vector,second_patte rn_vector)))

382 It produces an output like this

5.3.

383

384

385

Pearson's Chi-squared test

data: table(first_pattern_vector, second_pattern_v ector)
X-squared = 45.2399, df = 49, p-value = 0.6263
Forward and backward secrecy

In this section we discuss forward secrecy, bac#lveacrecy, and enhanced backward secrecy
as security capabilities. We provide some elemgrgaamples for illustration. These security
capabilities are typically for DRNGs and the cryptphic post-processing algorithms for
PTRNGs and NPTRNGs. Note that the following examalee not intended as advice for good
DRNG design.

For simplicity, we interpret a DRNG as a Mealy miaeh that is, a pure DRNG that runs
without any external input after seeding,

J:S® S, s5,,=/(s) andy :S® R,r,:=y(s,) foraln31 . (59)

Forward secrecy is the assurance that subsequentef values cannot be determined from
current or previous output values. Suppose that dheent or previous output values

ror,, o at timei,i,, |, are known and that the attacker wants to calcukseoutput

valuer, for some indek,i,, |, <n.The attacker might use the system of relations:
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LTy Gy i) for j=12,..k. (60)

(Note that the output functiopr is not invertible in general, and hence one mhetk all the
elements in the pre-imagja'l(rij).) If the internal states is known, the state transition
function / and the output functiory are easy to evaluate. Thus, it shall be diffidolt

calculate the pre-image, e.g., because it is togelar if y is a cryptographic one-way
function.

386 Backward secrecy ensures that previous output sataenot be determined from current or
future output values. Assume that the current turéuoutput valuess,l,riz, . at time instant

Tk

i,,i,, i, are known and that the attacker wants to calculeeoutput valuern for some
indexiy,i,, J,<n.The attacker might apply the system of relations:

Ty Gy ) for j=12,k. (61)

If the internal state s is known, the state tramsifunction/ and the output functioyr are

easy to evaluate. Thus, the compositipfi ! y !

shall & Ho compute (note that
n-i;<0for j=12, k). One may choose the state transition funcfio and the output

functiony as appropriate cryptographic one-way fioms.

387 Enhanced backward secrecy ensures that previoussrahnnot be determined from the current
internal state, or from current or future outpuiues. Because of lack of (unknown) input for a

DRNG as Mealy machine, knowledge of the currergrimdl stateS, is sufficient to calculate

current and future output valuds.l,, fi, at timesiy,i,, Jd ,ini,, 4 >C . Thus, the

’ik

attacker knows the current internal stgte and svemtalculate the output vaIJe c>n
The attacker might use the system of relations:

r. Ty (@ ™(s,)) for j=12,...k. (62)

Because the output functiop is easy to calculdwe,state transition functiop and its
negative powey ! shall be cryptographic one-way tions.

388 In the following examples, suppose the DRNG has ititernal states” =(g"’, §’) ,
s =(s,8,...80) for j=12; and AES k ¥ denotes AES-128 [AES] for plaintext
and keyk.

Example 5: (backward secrecy, no forward secrecy)

389 Suppose the DRNG uses the state transition funcioh =/ (sV) =( AES 8, 8), 9)

and the output function®™® =y (s”) =s!’ . Note that the plainte¥tteecomes the key in the
next step.
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Internal states Output
Time i s{ s
Time i+1 S S

ra+s) = AES (Ki+,ri+2))
390 Breaking forward secrecy requires a simple AES-dal8ulation

failed forward secrecy

Time i <

=gy

Time i+1 r
AES-128
given output

given output

Time i+2

calculated output

391 This DRNG ensures backward secrecy becauseAES k p as-aanfunction for the
key k prevents calculation of previous output, eifetme (plaintext/ciphertext) paif p,c) is
known.
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backward secrecy

Time i s e
A
AES-128 as one-
miykf;';dio” for ' unknown output
Time i+1
given output
Time i+2
given output
Timei+3| ¥ Si+3)
As the attacker knows the current outpit? and yamlows the internal stats’*?  or

si*? at time i +2 , the attacker is able to calculate thevipus internal state at time+1

becauses'*V ;= &2 "= AES'( #?, ¢'?) and!™:=r"? | but cannot calculate
P04

Example 6: (forward and backward secrecy)

392 Suppose the DRNG uses the state transition funaii =/ (s) = (AESs)’,s"),s)
(as in the previous example) and the output functib™® =y (s") = AESs{’,s") A s,

Internal states Output
tmei [ sp [ |
[
v
AES-128 >+

S

—

The attacker cannot calculate the internal statenfthe output values, because the output
function is a one-way function for any fixes{) *.

“2 under the assumption that the AES-128 behavesililemdomly-selected function
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Example 7: (enhanced backward secrecy)

393 Suppose the DRNG uses the state transition function
st =/ () = (AEYS),s") A s, AEqs",s{")A s’y and the output function
10 =y (s0) = AES” A5 sP) A 50,

Internal states Output
Time i §P 552')
AES-128 %3 84 AES-128
+ + v
=(ES—128
Time i+1 st s

The state transition function and the output fuorctire different one-way functions.
5.4. Examples of post-processing algorithms

394 This section considers examples of post-procesdugyithms. For further exposition, we refer
the interested reader to [Schi09b], section 2.5.

395 We use a description as generalized Mealy madSing, R,/ ",y ). Let S denote the set of
internal states! input alphab«igt,= (il,iz, ,in) the input secgi@fi stringsl * over | R
the output alphabef = (r,,r,, [, )the output sequence of strings ofer s, ,the initial
internal state/ " :S” I ® S the state functions,,; =/ (S.,i,), andy :S I’ ® R
the output functionr,,, ==y " (S,.i,) - Let 0 denote the empty string.

54.1. Von Neumann unbiasing

396 Von Neumann unbiasing works asynchronously, teedeives pairs of bitl = (Jar Joeen) as
input, but does not generate any output for ceitgint pairs. Moreover, it has no internal state,

i.e., S isthe empty set. ={01’,R={01,0} and

0 fori, = 01

. 1fori, = (0O
o=y @iy = o 89
o fori, = (00

o fori, = (@7
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The output sequende  is the concatenation afK(eiII{O,l} ki Ln.

397 Lemma 3: If (jl, I ,j2n) is a sequence of independent but biases, bibon Neumann

unbiasing generates a sequelice (rl, r,, ,rm) of independentrdniased output bits with
mEn/2
5.4.2. Xoring of non-overlapping segments of independentits

398 Assume thatX =(Xl, X, Xn) with independent, identically-disttdalibiased binary-

valued random variables as components, i.e.Npr Il jTaR we have P{ Xj = O} =p and

P{X; =1 = p with e=P{X, =0} - P{ X =1 . Denote

n n/2 n

P,:=P X °0mod2 = g2 gk
' i=1 ko 2K ,
n (n-1)/2 n
=P X °1mod?2 = 2kl gkl and
pl,n - 1 - 2k+1 q] @
en = pO,n - pl,n.

We calculate

N2 (n-1)/2 n

mzkﬁg QHZ-kl kai

n n
en: _ n_— _1k n Kk l&
(Po- P :O( A 2k L 2k+1

k

:pOn- pln'

399 The xor-sum of the bits smoothes exponentiallyttlas of the independent bits. These sums are
independent, as well.

5.4.3. Two sources

400 Suppose that post-processing calculates the fundie f (X,Y) of two random variableX
and Y with values in(z,z,, ,z,) , where X ranges over the €ef,X,, ,X,) with
distribution P{x. = X}=p, , w.Lo.g.p, £ p, £ £ p,, and Y over the sety,,Y,, ,V,)
with distribution P{y, =Y}=q , w.l.o.g.q, £q, £ £ q,. The distribution o is given by
P{z=f(X,Y)}= P{x =X,y =Y}. Suppose further thdtis invertible in the second

Z=f(xy)
argument, or more precisely: For eadndj, there exists exactly orle with z = f(x;,y,),

i, j,kT ﬁ Therefore, the functiori generates for each a permutationp, oveﬁ
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according toz, = f (X;,Y,,;) - We can writE’{zi = f(X,Y)}: P{xi =X\ Yo i) :Y}. If

the random variables andY are independent, one can write the distributioA ke this:

n

|:>{Zi = f(X,Y)} = P9,

i=1
For sums on the right side, we can apply the ragement inequality [HaLP34] like this:

n n n

P XUy a1 £ P{Zi = f(X1Y)} = P9, E POk (63)
2

k=1 j=1 k

401 This formula provides an estimate for the distidnutof Z as the output of post-processing
using the random variablésandyY. If the random variableX andY have the same distribution,

i e., P{xi = X} = P{xi :Y} =p forallil 1n, this formula shows that the itn entropy
of X (orY) (cf. paragraph 145) is a lower bound for the ewmropy ofZ (cf. paragraph 143:

Hon(2)=-log,max pz)3- log (B % })'= H(X)

xic

402 Assume that the binary-valued random vectérand Y have lengtH, and assume that their
realisations are observed from the same statiorergom source but at time instants that are
sufficiently far away to exclude dependencies betweandY. The post-processing algorithim
is defined as bitwise xor. Then the right-hand ptiéhe inequality (63) equals the maximum

probability of the “zero” vectol0 = (0,0, ) , and the left-lthside can be substituted by the
maximum of all probabilities of post-processingpuit

mia>{P{zi =f(X,Y}} = p?=Fz=0}
j=1

and finally we get:

H i (Z) = - log, ” p’ =-log, P{a = Z}

i=1

This formula reduces the estimation of the min@mtrto the estimation of the probability of
the “zero” vectorO .

54.4. Uniformly distributed input data for random mapping s

403 In this example we consider the effect of a randaapping on uniformly distributed input data.

404 More precisely, let Z,={0} ,n-1} , Z ={01 ,m-1} , f=Z ® Z, ,
Vins ={z1 Z,,:)|f '@ ¢ and Vins =IVips |- For a uniformly distributed random
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variableX onZ_ , we obtailr(f(X) =2z) = foreaci Z_ with exactly e-pnages.

:slm

HenceP(f (X)1 (f)s): andP(f X1 Vins F

S=r r=s

n

factor is given by v, . If the mapping is selecteddamly, i.e., if f may be viewed as a
S=r

realisation of a uniformly distributed random magpi F, we obtain:

n n n SEF( ]{s}(lFl(Z)l))
& =E(PIFO)T V)= | Sxlms) 7 e

s=r r=s n r=s n
s PL(F @9
— " 2e — S n s ns
= = —-m p(I-p)
r=s n st N S

n

n-1 _,
= p* (- p)"*=Priysr-1
s-1

S=r
with p=— while Y denotes 8(n- 1, p) -distributed random vasattiurther,E. (*) and
m

Pr. (}) denote the expectation and the probability withardgto the random mapping

Irespectively. In particularg quantifies the average probability th&(X) has 3 r pre-
images. The corresponding work factor equals

W (FOO)=E-( VipeD= m " p*- p)™ =mPr(y’s r)

S=r S=r

whereY denotes aB(n, p) -distributed random variable.

405 In particular, E(Y') = n ande(Y) = n-1 .Ifn andn are large (the caseare interested
m m
in) and if g-= =N >>1, the Central Limit Theorem implies
m
1- 05- r+15 -r+05
e =1- F(— =9 =F @122 and  w, (F(X)=mF (€2
Vg Jg Jg
(For n» m, the Poisson approximation should be moreregient.) Similarly, for a uniformly
distributed random variable U on Z_  ~we obtain the work factor
w, U)=me. For rsi the difference of work factors

w, (U)- w, (FOX) =m(F (212219 p (221209
Jg Vg
quantifies the ‘distance’ betwedh and F(X) on the elements of , with pre-image sizé r
. Linear interpolation in r yields an approximatiofi the work factorw, (F (X)) and the
corresponding work factor defect for each parametedl (01). More precisely,
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406

-1, +0. a-e
w,(FOX)) =mF (22709 in r =r- 142781 tor ¢ £ate , while trivially
\/5 € - €.
w, (U) =ma . The differencew, (U) - w, (F(X)) (‘work factor defect’ for parametef ) is

S )

NN

In the context of cryptographic post-processingodtms we are mainly interested in

parameterd and Mthat are powers of two (i.en=2" m=2" ). The table befmavides
exemplary numerical values.

clearly bounded byn(F (

Table 14: Work factor and work factor defect foifarm mappings with equidistributed input

g r
210 1026

W, (U)
0494m

w,, (F (X))
0481m

W, (U) - v, (F(X))
0013m

210 1025

0506m

0494m

0012m

210 1100

0.0099m

0.0092m

0.0008m

28 258

0.4879m

0.462M

0.0248n

0.5125n

0.4879n

0.0250m

5.5.

407

5.5.1.

408

409

8 257

9 Ta max{w,.(U) - w,.(F (X))}

al (01)
0.0126n
0.0126n
0025m

w,(U) | w, (F(X)) | w,(U)- w, (F(X))

0.0125n
0.0053n
0.0249n

0.48759m
0.494n
0.475In

05m
0.1m
05m

210 | 05
210 |1 01
28 | 05

Examples of online test, tot test, and start-up tés

In all three examples in this section, we assuratettie internal random numbers are stored in a
512-bit FIFO. The FIFO outputs internal random namsbupon external request. The FIFO is

filled up with currently-generated consecutive ing random numbers,,r,,... at an instant

when there are only between 128 and 256 fresh rartits left. The PTRNG continuously
generates internal random numbers. For the seawhdhad example, we assume that the das-
random numbers are binary-valued, i.e., one ranibie generated per time unit.

An online test of the internal random numbers

All internal random numbers that are used to fijl the FIFO have been tested. The internal
random numbers are interpreted as bit strings eguhented into 4-bit words? goodness-of-
fit tests on 128 bits (4-bit words) are appliedeTdnline test fails if the test value exceeds 65.0.
According to ([Kanj95], pp. 69), the test variabie approximately ¢*-distributed with 15

degrees of freedom, which gives rise to the sigaifce leve3.8x10" .

If a test fails, i.e., if the null hypothesis (.itbe internal random bits were generated by aal ide
RNG) is rejected, the PTRNG is shut down and aoremessage is generated. The error
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410

411

5.5.2.

412

413

414

415

416

message is logged and the PTRNG must be restadedaity. Only two manual restarts are
permitted within the life cycle of the PTRNG.

Internal random numbers that are not stored iFth© are neither saved nor tested unless they
are needed to complete a sample for the onlineltasy be expected that the PTRNG applies
around 1000 online tests per year. For an idealaannumber generator, thé-distribution
function gives rise to a probability of arou3Bx.0 * that there will be at least one noise alarm
within a year (cf. to the next example).

This online test meets functional requirement PT& Whether the test detects a total failure of
the noise source clearly depends on the post-singealgorithm.

A straightforward online test

In the preceding example, the internal random nusbere tested, which were stored in the
FIFO or were used to fill up a sample for the omliest. In this example, we instead assume that
an online test applies to those das-random numnibatsare used to generate the stored internal
random bits or are needed to complete a sampkldoonline test. Again, &> goodness-of-fit

test on 128 bits (4-bit words) is applied, andst #@lue that exceeds 65.0 causes a noise alarm.
The consequences of a noise alarm are the sametesfirst example.

We analyse the proposed solution with regard tadlgeirements of class PTG.2 (also PTG.3),
which are more restrictive than those of PTG.1.

As pointed out earlier, the online test should élected with regard to the stochastic model of
the noise source. Thus, whether té goodness-of-fit test is appropriate depends on the
concrete noise source. This aspect is outsidecthmesof this example.

A noise alarm occurs if a single test gives a vajgater than 65.0. This is a very rare event, at
least under the null hypothesis (ideal noise sQumhich implies independent and uniformly
distributed 4-bit words. However, this approach tvas disadvantages that will be described
below.

On the one hand, even under the null hypothesistest variable is only asymptoticallg?-

distributed with 15 degrees of freedom. More prgisthis is the limit distribution of the test
variable when the sample size tends towards igfifithe sample size is ‘small’ especially for
large rejection bounds, i.e., for small failure Imbilities, the relative error

| Pexact = Papprox |/ Papprox | €&N be large. Herep,, ... denotes the exact rejection probability,

whereas p,,,..« is the approximate rejection probability derivednfi the c¢* distribution. For

example, for the sample size 320 bit (= 80 fourvkards) for the rejection bound 65.0 the
relative error is 10.1 ([Schi01], Sect. 4). We poi,,,, and not p,,.into the denominator,

since the designer of a PTRNG grounds his furthemsicerations on the approximate

probability. For 128 (4-bit words), this ratio staipe smaller, but the number of noise alarms
should be considerably greater than is to be egdeoh the basis of the asymptotic limit

distribution. This might affect functionality aspecbut it is not a security issue. For other
statistical tests, this effect may be converseultiag in considerably fewer failures than

expected.
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417

418

419

55.3.

420

421

422

423

424

A second drawback of the proposed online testas ithis hardly possible to estimate the true
rejection probability if the distribution of the slslandom numbers deviates from the output of
an ideal RNG (e.g., because of a bias).

Whether this online test fulfils the functional uégments PTG.2.3 and PTG.2.4 (equivalently,
PTG.3.3 and PTG.3.4) first depends on whether afiegoodness-offit test is appropriate for

the given noise source. Moreover, it demands aisabfghe rejection probabilities for tolerable
and non-tolerable weaknesses of the das-random emamis pointed out above, this is
difficult, especially for rare events (large rejeotboundaries).

These problems are the motivation to propose a smpRisticated approach that is discussed in
the next example.

A more sophisticated online test procedure

In this section we discuss a generic approachdatrs the online test, tot test, and start-up
test. As in the previous example, the scope oinig$s$ the das-random numbers that are used to
generate the internal random numbers stored iRiff@ or needed to complete a sample for the
online test. For details, the interested readeefisrred to [SchiO1]. This online test procedure

also is discussed in [AIS31An], Example E.7.

The start-up test is performed (a singté test over 128 bits (4-bit words)) when the PTRNG i

started. The PTRNG passes the start-up test ifetstevariable i€ 65.0. This evaluation rule
detects a total breakdown of the noise source amy wbvious statistical weaknesses
immediately when the PTRNG is started. The startagb thus fulfils functional requirement
PTG.2.1 and the first part of functional requiret@mG.2.3 (also PTG.3.1 and PTG.3.3).

As explained below, the online test procedure at»eers the tot test functionality while the
PTRNG is in operation.

First, the type of the so-called “basic test” minstselected. The stochastic model of the noise
source clearly should be taken into account, becansunsuitable basic test may reduce the
effectiveness of the online test procedure conaligy however, this aspect is not in the scope

of this example. For simplicity, we decided oncd goodness-of-fit test over 128 bits (4-bit

words) as in the previous examples. We point oat the proposed online test procedure is
generic and transfers almost literally to otheridtests.

A test suite is made up of a maximum Nf =512 basic tests (heréb12 c? tests). In the
following steps, we will use the notatidg,,C,,... to refer to the test variables, i.e., random
variables that correspond to the test values athasts. In particularH, := E(C,) (i.e. the
expected value of the basic test variable under thell hypothesis) and
H, = @€- b)Hj_l + ij for j=12...with b= 2°°%, whereby the test variabl€§ andH,

are each rounded to 6 binary digits. This allows talculation of the "history variables"
H,,H,,... using integer arithmetic. The observed test valaed the computed history

variables are denoted with small lettets,€,,... andh,h,,..., respectively). Three evaluation
rules apply for each stepf | £ N :
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425

426

427

428

429

@iy if Ci.2,Ci1,C; > 26.75, then there is a preliminary noise alarm,
(i) if ¢, T [L30170], then there is a preliminary noise alarm,

(iii) if ¢; >2695, then there is a noise alarm.

If no preliminary noise alarm occurs within a teslite, a new test suite is started. Each
preliminary noise alarm causes the current tes¢ saibe cancelled and the FIFO to be deleted.
Each preliminary noise alarm is logged. If threasmrutive test suites are stopped due to a
preliminary noise alarm, a noise alarm occurs,RR&NG is shut down, and a corresponding
error message is generated. Note that evaluatien(ifiy covers the tot test functionality as is
discussed below.

For demonstration purposes, we assume for simplitiat the digitised noise signals are
realisations of binary-valued independent and idaty distributed random variables. The
probability P(1) that a das-random bit assumes the value 1 migh¢rdeon the individual

device and might change in the course of time dwing effects.

In a real-world evaluation, an assumption like tfilependence assumption) should be the
result of a thorough analysis of the stochastic ehahd investigation of prototypes. For
instance, the analysis of the stochastic modek(gf, to [KiSc08]) might imply that the random
variables are stationary with rapidly decreasingethelencies, and that the das-random numbers
pass test suite B; moreover, no one-step deperedeweire detected.

We assume that with regard to the algorithmic postessing algorithm (which is beyond the
scope of this example) that it is sufficientRf1)l [0.49,0.51. If this probability lies outside

of the interval [0475,0529, the online tests should soon recognise this dact trigger a
noise alarm.

Table 15 shows the probability of a preliminaryseoalarm within a test suite and the average
number of noise alarms per year. Here it has besunged that 1584 basic tests are performed
each day (of which 144 are based on the evenliofyfup the FIFO).
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Table 15: Probability for a noise alarm within attsuite and the expected number of noise alarms pe

430

431

432

433

434

year for different distributions of the das-randoumbers

P®Q) Probability for a noise pre-alarfmAverage number of noise alarms per
within one test suite year
0.500 0.0162 0.0047
0.495 or 0.505 0.0187 0.0072
0.490 or 0.510 0.0292 0.027
0.485 or 0.515 0.0794 0.52
0.480 or 0.520 0.2954 211
0.475 or 0.525 0.7670
0.470 or 0.530 0.9912

Compared to the online test procedure proposeldepteceding example, the situation is more
favourable.

Under the null hypothesis (ideal RNG}(C,; > 26.75) » 003. Here, thec? distribution still
has "mass" and the relative error is low.

Decision rule (i), too, does not depend on theuomnce of a single, very rare event but on a
several events that, taken individually, are bynmeans rare. The small weight factbrensures
this.

If the distribution of the digitised noise sequergeviates from the null hypothesis, the
distribution function of the test variable can Istirmated by means of a stochastic simulation.
Here, a pseudo-random number generator is usednergte standard random numbers, i.e.,
pseudo-random numbers that are uniformly distridaie the interval [0,1). Typically, one uses
a linear congruential generator or a linear feekllsdift register, since they are very fast and
have good statistical properties, and unpredidtgbibf the pseudo-random numbers is
irrelevant here ([Schi09a], subsection 2.4.3). Ftbenstandard random numbers, one computes

a large number of sequences (elf)’ of 43128 pseudo-random bits) according to the desired
distribution. To each sequence, the® test is applied. For the distributions taken iatcount

in Table 17, stochastic simulations delivered ti®ting probabilities that the test variable is
> 2675: 0.0299 (null hypothesis)0.0303 0.0331, 0.0371, 0.0416, 0.0526 and0.0656
(order as in Table 17).

Under the above assumptions, the basic test vasdb|,C,,... can be interpreted as the

realisation of independent random variables. Degisules (i) and (ii) define a homogeneous
Markov chain on the finite state space

W={(2°k,i)|kT N,2°k] [130170], 0£i £2} E{m},
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435

436

437

5.6.

5.6.1.

where 1 is an absorbing state. The stdtei) is reached if the history variable assumes the

value vV and the lasti £ 2 test variables were greater tha@75. The absorbing stateéy
corresponds to a preliminary noise alarm beingy&igd (see also [Schi01]).

Depending on the application and on the consequeihaeoise alarm the expected number of
noise alarms for the range of permitted probabeditP(1) might be too large. We point out that
by selecting other parameter sets the online testepgure can be made more or less restrictive
(see also [Schi01)).

Under the assumption that the’ test is appropriate for the given noise sourcectional

requirement PTG.2.3 (also PTG.3.3) is fulfilleddaalso PTG.2.4 and PTG.2.5 (also PTG.3.4
and PTG.3.5).

Suppose that a total failure of the noise soursali®in constant output sequences. If the last
220 bits of a sample are constanflyor constantlyl, this impliesc; * 2695, which triggers

a noise alarm due to decision rule (iii). Note th@ current basic test may not necessarily
detect a total failure if it occurs later. Howevarnoise alarm is triggered at the latest by the
subsequent basic test. At this point in time, havewno internal random number has left the

FIFO, which has been used to fill up the FIFO after total failure occurred. Thus, functional
requirement PTG.2.2 (also PTG.3.2) also is fulfille

Examples of RNG designs

PTRNG with two noisy diodes

Example Basic RNG Design with noisy diodes

438

439

440

441

442

In this section we discuss an example of a PTRNGKiSc08] for details).

The random source of the RNG consists of two egaiy diodes. For example, Zener diodes
have a reverse avalanche effect (depending on dypee3—4 Volts or about 10 V) and produce
more than 1mV noisy voltage on about 10 MHz. ThekEr Noise in Schottky diodes is
associated with static current flow in both resis@nd depletion regions (caused by traps due to
crystal defects and contaminants, which randompgwsa and release carriers).

Both diodes provide symmetric input to an operaticammplifier to amplify the difference of
noise voltages. The output of the operational dieplis provided to a Schmitt trigger, where
the mean voltage of the amplifier meets the threlsbbthe Schmitt trigger. The output signal
of the Schmitt trigger consists of zero and oneaigf random length. This signal is latched to
the digitised random signal with a clock, which gldobe at least 20 times slower than the
output signal of the Schmitt trigger.

The tot test separately checks the generationief/moltage of each diode. The online test shall
check the quality of the digitised noise signakhiytable statistical tests.

Figure 9 illustrates the basic design.
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Figure 9: Basic design of RNG with noisy diodes

443 The circuit for AC coupling, the negative feedb&okhe operational amplifier, the stabilization
of the power supply and the temperature comperngefiiects are not shown in this figure. A
drift of the noisy voltages or the operational aifigei output results in impulses that are too
long or too small, causing a biased digitised nagmals. Therefore, the digitised random

signal shall be passed to a Neumann/Peres unbiasimepl. Clearly, long-term aging effects

may be neglected here.

Variant of RNG Design with noise diodes

444 The advanced variant of the basic design outpusnitimber of Schmitt trigger impulses
(caused by 0-1-crossings) modulo 2 as the digitiggse signal.

445 Figure 10 illustrates the advanced design.

\Y,
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h 4
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Figure 10: Variant of the basic design of RNG witlisy diodes
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446 Each impulse of the Schmitt trigger inverts thengighat is latched by the clock. The quality of
the digitised noise signal depends on the randosnofthe numbers of these impulses. Unlike
the basic design described above, it is not relewduether the intervals between 0-1 and 1-0-
crossings, or between 1-0 and 0-1-crossings, ardiwhlly distributed.

We provide some exemplary measurements of a sioiésign (cf. [KiSc08]).

447 The output of the operational amplifier within tinmgervals of 1ns gives diagrams like the
following (resolution: 8 bits).

Difference of noisy voltages of the Output signal of the operational
operational amplifier (low amplifier (maximum amplification)
amplification)

448 The distribution of the time intervals between sssive 01-upcrossings may be illustrated by a
histogram or by percentiles of a distribution. (&ldhat these diagrams belong to different
measurements).

18 September 2011 AIS 20/ AIS 31 page 118



A proposal for: Functionality classes for randonmiwer generators

This histogram shows the empirical This graphic shows the percentiles of the
distribution of the time intervals between gamma distribution versus the observed
successive 01-upcrossings (in ns). percentiles of the time intervals between

successive 01-upcrossings (in ns).

449 These measurements also allow calculation of theepepectrum and calculation of the auto-
correlation of the signals.

The mean power spectrum of the output of Autocorrelation of the difference of noise
the amplifier (low amplification) voltages (maximum amplification)
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450

451

452

5.6.2.

[KiSc08] develops and analyses a stochastic mdual fits to this PTRNG. This stochastic
model allows the estimation of a lower bound foe tiverage entropy per internal random
number. One key observation is that under mild mgsions, the internal random numbers may
be viewed as realisations of a stationary procdss.particular, autocovariance and
autocorrelation can be calculated. Interestindtg, $ame type of stochastic model fits several
other RNG designs, too (the stochastic processéndhdifferent distributions, of course). The
interested reader is referred to [KiSc08] for detai

The security architecture of this PTRNG should dbscand implement protection against
effects on the power consumption and self-testss@f-protection).

Figure 11: Examples of self-protection in PTRNGdzhen noise diodes

Effective online tests should be tailored to thecktastic model of the noise source. Reference
[KiSc08] analyses properties that effective ontiegts should have.

Examples of DRNGs

Example 39: NIST SP 800-90 DRBG Mechanisms based biash Functions

453

454

NIST Special Publication 800-90 “Recommendation Random Number Generation Using
Deterministic Random Bit Generators” [NIST800-9pksifies mechanisms for the generation
of random bits using deterministic methods. Thehwe$ discussed are either based on hash
functions, block ciphers, or problems from numbegaory. We give a brief description of NIST
recommended DRNGs and hybrid DRNGs that are basé&d$T-approved hash functions and
HMAC. The reader may refer to [NIST800-90] for dista

[NIST800-90] comprises a detailed description @f ithiterfaces and the functions of the DRNG.
Figure 12, which is from [NIST800-90], chapter [fystrates the generic design of the RBG.
The entropy input and the seed shalkept secret. The secrecy of this informatiorvioles the
basis for the security of the random bit generé®BG). The entropy input shall at least provide
the amount of entropy requested by the Determiifandom Bit Generator (DRBG)
mechanism given by the parametsecurity_strength Other data fed into the DRNG as
personalisation string, nonce, and additional inpay or may not be required to be kept secret
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455

by a consuming application; however, the secufithe RBG itself does not rely on the secrecy
of this information.

[NIST800-90], chapter 10.1, defines two mechaniimas are based on the hash functions SHA-
1, SHA-224, SHA-256, SHA-384 and SHA-512

Hash_DRBG using one of these hash functions,

HMAC_DRBG using one of these hash functions andHMAC based on these hash
functions.

The hash functions are used directly and in thenfaf the functionsHash_ df (cf.

[NIST800-90], section 10.4.1) andashgen(cf. [NIST800-90], section 10.1.1.4). We denote
the output length of the hash functionhesh_outlenwhich is 160 for SHA-1 and for SHAx
for the other hash functions.

Figure 12: RGB Functional model defined in [NIST&HT)

456 [NIST800-90] describes these DRNGs with parameatepending on the hash function used (cf.

[NIST800-90], Table 2 in section 10.1 for the liatibn of these parameters). The parameter
seedlerequals 440 for the hash functions SHA-1, SHA-ZHA-256 and equals 888 for SHA-

“3 Note that since SHA-224 is based on SHA-256, aHA-384 is based on SHA-512, there is no efficiency

benefit for using SHA-224 or SHA-384.
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384 and SHA-512. Note the length of the entropyuinphe personalisation string and the

additional input shall bef 2** . The number of requeitse last reseedifigis counted by
reseed_counté&t Thereseed_counteis bounded by the parameteseed_intervalwhich shall

be £ 2*®. The length of the binary output sequences perestcghall bef 2°

457 [NIST800-90] describes the instantiation functighe reseed function and the generate
function of the DRNG. The reseed function and teaggate function have the same internal
state but different input lengths, and the rese®dtfon does not generate output. Therefore, it
is easier to use two algorithmic descriptions & DPRNG introduced in section 2.2.3 on page
25:

the 6-tuple(S, 1, R,/ ,), p,) for the “normal operation” using trengrate function,
and

the 4-tuple(S, 1, J/, py) forthe reseeding operation.

A complete model for both operations is also pdesity combining the state transition
functions; andWlN in one more complex function and an empty stringpot in case of
reseeding.p, denotes the distribution of the intlestate after instantiation or reseeding of the
DRNG.

458 The internal state of the Hash_DRBG consists o&laeV that is updated during each call of
the DRNG, a constar@ that depends on the seed, and a coustsed_countethat indicates
the number of requests for output since new entiopyt was obtained during instantiation or
reseeding. Both algorithmic descriptions use tmeesiternal stat&s  defined as

S :{O,} seedlen,{ 0}1 seedle{ @’148

the set of internal states, where we wrdge= (v, G 2 v stands forV, ¢ for C and z for
reseed_countein [NIST800-90].

459 The instantiation function generates the initial internal stagg = (\,, S, ) by setting t

initial value r, of the countereseed_counteto 1 and calculates the valugs  ampd  using an

entropy input stringntropy_inputobtained from the source of entropy input, a valorceas a
time-varying value that has at most a negligiblearde of repeating, and an optional
personalization_string (cf. [NIST800-90], section 10.1.1.2). The derieati function
Hash dfcalculates from an input bit stringput_stringan output bit stringequested_bitef
lengthno_of bits_to_returrby repeated application of the hash function uetitpcontains at
leastno_of_bits_to_returiits, where the initialempstring is empty, as follows:

temp:=o0, counter=1

4 According to our definition, it is indeed a sequiate as will be shown later. In this example, we the
notation from [NIST800-90].

> More precisely, this counter is set to 1 by thetdntiation function and by the reseeding function.
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no_ of _bits_to_ return
hash_ outlen
For i=1 tolendo
temp:= tem# Hagh count)#r no of bits to retﬂlrn inpstring )
counter.= counter1

requested_bits:% eftmost(no_of bits_to_returnbits oftemp
Hash_ df(input_ string no_ of _ bits to returj= requedt _bits

len:=

One denotes the instantiation function ustdgsh_ df tike:

V, = Hash_ df( entropy inpijt nonge personalizationrirng ,seedlen)
c, = Hash_ df(0>00| y, seedle)

=1

460 The instantiation function generates internal statih an initial distributionp, depending on

the input. The minimum entropy and minimum lengtrentropy input sequence provided for
instantiation are denoted as paramegmurity _strengtiin [NIST800-90].

461 Thegenerate functionupdates the internal state and generates the aftputequested length.
In terms of the algorithmic description it may besdribed by the 6-tupléS, |, R,/ ,), p,)
with

235 ) -
{O,Z}' " 1,2°, is the input alphabet, wheie= (e,]) eis the input sequence
i=0

used for the state transition function and the wutpunction (denoted as

additional_inputin [NIST800-90]) and the length of the requested output (denoted as
outlenin [NIST800-90]),

248 )
R, R= {0,}', the output alphabet is the set of binary sece®mf lengthf 2*°
i=0

and
P, is the distribution of the internal state aftestamtiation or reseeding.

462 The DRNG may or may not support additional input foe generate function, the state
transition function and the output function. Theli&idnal input may be publicly known or an
entropy input for a hybrid DRNG (section 2.2.3)tHe DRNG allows additional input for the
generate function, the state transition functiong ¢he output function, the DRNG uses pre-
computation of an intermediate valué  of the fiatt of internal state, as follows:

v¢=(v, + Hasl{0 %0 y| ) mod 2«
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463

464

465

466

467

If the DRNG does not support additional input, west = v. for simplicity of description.

Pre-computation prevents malicious control of thierinal state and the output through the
additional input if the valug is unknown and makes this control very hard ef¢imei valuev is
known, because the hash function is a one-way ifumct

The state transition function / :S" | ® S calculates the next initial state
Sw1 = (Vowr Guwr Ze0) =/ (& G, 7) as follows:

Vn+1 = (\@+ HasI(O )02” W+ g + Z‘) mod 2eedlen

S0 S

Zy = 7, +1

Theoutput function Hashgeny : S” | ® R calculates output of lengtHrom inputi = (e, 1)
from the intermediate valug¢  as follows:

=y (v§l) =Hashgerg | ¢

The functionHashgengenerates the binary striogtputfrom the valuenputfor a given length
requested_no_of bitsy repeated application of the hash function detitpcontains at least as
follows:

temp:=o0, data:= input

requested no of bits
outlen

For i=1 tolendo
temp:= temp Hagh daj
data:= ( data+1) mod Z°°*"

output:= Leftmost(temp)bits of temp
Hashgeff requested no of bjts input out

len=

Note that both the part of the state transitioncfiom that completess,,;, and the output

function are based on a hash function and behagerasdom mapping. This provides forward
secrecy as assurance that subsequent (future)svahrnot be determined from current or
previous output values.

The output functiony (v§,1) = Hashgerf ] W is a cryptographic one-way cion with
respect tov$ (observing the outpus obviously known). The value¢  will contain safént

entropy to prevent successful guessing. The attackenot determinev$ . Becausd is

prerequisite for calculation of the output, theeinial state scannot be determined from current
or future output values. The DRNG provides backveatiecy.

18 September 2011 AIS 20/ AIS 31 page 124



A proposal for: Functionality classes for randonmiwer generators

468 The functionv, :pmn(j (V¢ ¢, z])) is a cryptographic one-way functias, well. For

k<n an attacker can calculag ~ agd , but he cannotileaéd previous valueg$ of  if

the internal states, and the possible additionautpare known. The DRNG provides
enhanced backward secrecy.

469 The reseeding functiongenerates a new internal stagg, = (V..;, Gy F11) by setting the
counterreseed_counter, , to 1 and calculating the new values, and udiegcurrent
value v, , an entropy input stringntropy_inputobtained from the entropy source, and an

optional additional_input (cf. [NIST800-90], section 10.1.1.3). The minimuength of the
entropy input stringntropy_inpuis given by thgparametesecurity _strength.

V,., = Hash_ df(0 01| y| entropy inpi{jt additional inpyt séem’
C,, = Hash_ df(0>0( y,,, seedle)

ra=1

n+l
470 The call of the reseeding function is enforced by
the consuming application setting fediction_resistance_flagind

the reseed countgeseed_countewhen reachinghe maximum number of requests
between reseedingseed_interval

The reseeding function provides the requested amotirentropy if the entropy input is
independent of the current internal state. If titerhal state is compromised, the secrecy of the
internal state is re-established. Therefore, th&lBRNnsures enhanced forward secrecy, i.e., the
assurance that subsequent (future) values of a DBMfRoOt be determined from the current
internal state, current or previous output values,demand of the consuming application, or
automatically as configured through the parameteeed_interval

471 Compared with the generate function, the reseetiingtion uses a longer input sequence

(without any length of output), does not usg , andoutput is generated. Therefore, the
algorithmic description of the reseeding functioaynbe described in the form of the 4-tuple
(S 1./ p):

the input alphabet i ={0,3 % {on 0
I = (entropy_ input additional_ inpuy,

the state transitioyi :{0,3 *****"{ op"®{ 9,17 Jo,1 *7*"} 0,f
St = (Vs Goas To2) =/ (Vi 1)
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472 The distributionp, depends on the entropy of theenrinternal state valug, , the entropy

input, and on the reseeding function itself. Hdglitional_inputmight contain some entropy if
it is kept secret, but the security of the DRNGgnet depend on this.

Example 40: ANSI X9.17 DRNG

473 The ANSI X9.17 DRNG is defined as follows (cf. [$€16]): Let TDES(X, y) denote the triple

DES encryption function with ke and plain text TDES*(x z) the decryption function

for the key X and cipher text , arld  a secret tipeS key (112 effective bits), which is
generated when the DRNG is instantiated. Furtierdenotes time stamps when random

numbers are requesteidz 1,2, , and denotes the seenetalhstate at timg  (before the
requested random numbers are generatrqci),{O,ZI.}64 =12 . Yingllis the initial

state, andr, the output at tinte i 12, R={01* . Each time utiprequested, the
following steps are executed:

T, =TDESKk,t;)
r =TDESK,T, A z)
z,, =TDESK,T. Ar)
474 The6-tuple(S, I, R/ y , p) isdefined as:

set of internal stateS=K "~ Z K = {0,1 ez = {0,1 64

publicly known input: | :{0,1 o4 |I| depends on the time basg, for PC typically
Ij=2%,
output alphabetR = {01}**

state transition functiory. : S" | ® S

K1y 2.0) =/ (K, 2) =

(65)
=(k, TDES k TDE$ k JA TDES,k TDES KA | )}
output functiony :S” | ® R,
r. =y (k,z) =TDESKk,TDESK,t)A z) (66)

distribution of the initial internal statep,  unifardistribution overS .

475 The distributionp, is not explicitly described incl$106], butk ands, shall be secret. The
uniform distribution provides secrets with maximentropy.
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476

477

5.6.3.

The internal state contains 176 bits. The intestate of this DRNG meets the necessary
entropy condition according to Table 13 to resighhattack potential, but does not meet the
recommended length of 200 bits. Obviously, for given k, the state transition function holds

the internal entropy because it is a permutatien; for . = TDEYS k t) one gets:
k., =k =k, z =TDES'(k,TDES*(k, z,,) AT)AT, (67)

Assume thatt; are publicly known inputs or at least easy to guap observing the DRNG

operation. The strength of forward and backwardesscappears to require cryptanalysis of the
triple-DES. This DRNG neither ensures enhanced wank secrecy nor enhanced forward
secrecy.

NPTRNG

Example 41: Linux NPTRNG [GuPRO06]

478

479

480

481

The Linux operating system includes two RNGs as qfahe kernel:
the non-physical true random number generator vdesgtbm/
the non-physical hybrid deterministic random nundpamerator /dev/urandom/

Externally-visible (user-space) interfaces (devideev/random/  and/dev/urandom/

are marked grey, while interfaces that are onlyessible inside the kernel are displayed green.
Both devices use a common DRN@put_pool and additionally implement separate
DRNGs: /dev/random/, the DRNG blocking_pool, and /dev/urandom/ the
DRNG nonblocking_pool . While there must be sufficient entropy in tinput_pool

and theblocking_pool before one can usklev/random/ , /dev/urandom/ also
generates output when the estimated entrepyof the input_pool (and therefore
nonblocking_pool ) has reached zero. In other worddggev/random/ needs the
input_pool  to be seeded continuously and it does not outmuerytes than the entropy
that has (probably) been harvested by the sourdesamdomness.This property of
/dev/random/ is defined to be the characteristic of an NPTRIN(ontrast to this feature,
the non-blocking output of random numbers (i.egardless of an entropy estimate of the
seeding input) makes thgev/urandom/  a hybrid DRNG.

There are three different registers holding rand@tues: the input_pool, blocking_pool and
nonblocking_pool. Then, entropy is extracted frome mf the pools by using extract_buf.
Extract_buf involves a one-way function (SHA-1) ttharovides the desired output and
simultaneously updates the buffer from which théebywere read. This “cryptographically
active” function is coloured red.

The functional design of the Linux random numbeneagator (Linux-RNG) is shown in the
following figure:
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Figure 13: Functional design of the Linux NPTRNG

482 The Linux-RNG uses different non-physical sourcdseatropy (green), that are either
dependent on user actions or internal system tdsSksry single event (e.g., keyboard and
mouse actions; hard disk, CD or USB access) is sthpp a specific value that is coded in 32
bits. This “event” is then passed to add_timer_oamgess where it is “tagged” with a (96-bit)
timestamp composed of the 64-bit running numbeprotessor cycles and a (32-bit) counter
that is increased every 4 ms. The Linux term fas ttounter is “jiffies”. The value of this
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483

484

485

486

counter is then used to estimate the entropy tmatetvent carries: add_timer_randomness,
therefore, compares (subtracts) the “jiffies” (i.a.combination of the number of processor
cycles encoded as 64-bit number and the numbeimalr tinterrupts since power-up of the
operating systems) of two consecutive events {hytiMoreover a “history” of the®] 2'* and

3% order deltas (where thé®rder delta is defined to be the previotffder delta subtracted
from the current %L order delta etc.) is saved:

- t,,).(d2=d, - d,,),(d® =d?- d2,)}

min{(d, =t,
Using this method, it is possible to dete?t 2 and ¥ order dependencies in the timing of the
events. The smallest delta-value (as an additiesalrity feature, limited to 11) is then set to be
the estimated entropy of the actual word. Note that the data writtetoithe primary entropy

pool is the complete Timestamp concatenated wiletlent. The four words are:
[cycles LSW] [cycles MSW] [jiffies] ‘[event].

One now can show that the entropy is estimatedveraconservative way: first, a maximum of
11 out of 128 bits must carry entropy; and secomel,entropy estimaté is based on a single
part of the data written to the pool. Its valueraes much more slowly than the word that is
supposed to carry the most entropy, namely [cyt®®/]. For example, while “jiffies” is
increased by 1, e.g., a processor clocked at 1.8 g&irforms more than 7.2 million cycles. This
leads to 22 “undefined” bits in the sampled counter

A deep analysis of the Linux-RNG showed that eduimk of data written to the pool (event
plus time stamp) has Min-entropy larger than 9/Aitthe same time, the average of the entropy
estimate®’ by the kernel was below 1 bit.

The Linux-RNG of Linux kernel 2.6.21.5 is assesssdan appropriate entropy source [TR-
02102].
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