
A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 1

Wolfgang Killmann

T-Systems GEI GmbH, Bonn

Werner Schindler

Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn

A proposal for:

Functionality classes for random number generators1

Version 2.0

18 September 2011

1 The authors wish to express their thanks for the numerous comments, suggestions and notes that have been

incorporated into this document.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 2

Table of contents

1.� Introduction ... 7�

1.1.� Motivation ... 7�

1.2.� Abbreviations .. 8�

1.3.� Common Criteria (Abbreviations)... 8�

1.4.� Terminology .. 9�

1.5.� Symbols ... 16�

2.� Basic Concepts ... 18�

2.1.� Randomness .. 18�

2.1.1.� Concept of Randomness and Random Experiments .. 18�

2.1.2.� Random number generators (RNGs) ... 19�

2.2.� Random Numbers in IT Security... 21�

2.2.1.� Usage of Random Numbers in IT Security .. 21�

2.2.2.� Basic considerations for RNG types .. 23�

2.2.3.� Design Description of RNG ... 24�

2.3.� Mathematical Background .. 28�

2.3.1.� Random variables .. 28�

2.3.2.� Entropy and Guess Work ... 31�

2.3.3.� Random mappings ... 34�

2.4.� Stochastics and Statistical Analysis of Physical RNGs ... 36�

2.4.1.� Stochastic model .. 36�

2.4.2.� Overview of Statistical Tests ... 41�

2.4.3.� Standard Statistical Tests ... 44�

2.4.4.� Test procedures .. 54�

2.4.5.� Additional Statistical Tests .. 57�

3.� Security Functional Requirements - Family FCS_RNG .. 61�

3.1.� Definition of FCS_RNG .. 61�

3.2.� Security capabilities of RNG types ... 62�

3.3.� Rationale for definition of the extended component ... 66�

4.� Pre-defined RNG Classes .. 67�

4.1.� Overview of pre-defined RNG classes .. 67�

4.2.� General Remarks (Exemplary applications, side-channel attacks, fault attacks) 71�

4.3.� Class PTG.1 ... 71�

4.3.1.� Security functional requirements for the RNG class PTG.1 71�

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 3

4.3.2.� Application notes ... 72�

4.4.� Class PTG.2 ... 74�

4.4.1.� Security functional requirements for the RNG class PTG.2 74�

4.4.2.� Application notes ... 75�

4.4.3.� Further aspects ... 77�

4.5.� Class PTG.3 ... 79�

4.5.1.� Security functional requirements for the RNG class PTG.3 79�

4.5.2.� Application notes ... 80�

4.5.3.� Further aspects ... 82�

4.6.� Class DRG.1 .. 84�

4.6.1.� Security functional requirements for the RNG class DRG.1 84�

4.6.2.� Application notes ... 84�

4.6.3.� Further aspects ... 87�

4.7.� Class DRG.2 .. 88�

4.7.1.� Security functional requirements for the RNG class DRG.2 88�

4.7.2.� Application notes ... 89�

4.7.3.� Further aspects ... 89�

4.8.� Class DRG.3 .. 90�

4.8.1.� Security functional requirements for the RNG class DRG.3 90�

4.8.2.� Application notes ... 91�

4.8.3.� Further aspects ... 91�

4.9.� Class DRG.4 .. 91�

4.9.1.� Security functional requirements for the RNG class DRG.4 91�

4.9.2.� Application notes ... 92�

4.9.3.� Further aspects ... 93�

4.10.� Class NTG.1 .. 93�

4.10.1.� Security functional requirements for the NPTRNG class NTG.1 93�

4.10.2.� Application notes ... 94�

5.� Examples .. 96�

5.1.� Guesswork for binomial distributed data .. 96�

5.2.� Contingency tables .. 99�

5.3.� Forward and backward secrecy ... 103�

5.4.� Examples of post-processing algorithms ... 107�

5.4.1.� Von Neumann unbiasing ... 107�

5.4.2.� Xoring of non-overlapping segments of independent bits 108�

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 4

5.4.3.� Two sources ... 108�

5.4.4.� Uniformly distributed input data for random mappings 109�

5.5.� Examples of online test, tot test, and start-up test ... 111�

5.5.1.� An online test of the internal random numbers .. 111�

5.5.2.� A straightforward online test ... 112�

5.5.3.� A more sophisticated online test procedure ... 113�

5.6.� Examples of RNG designs .. 116�

5.6.1.� PTRNG with two noisy diodes .. 116�

5.6.2.� Examples of DRNGs ... 120�

5.6.3.� NPTRNG ... 127�

6.� Literature ... 130�

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 5

Tables

Table 1: Attack potential, guessing probability and security bits .. 22�

Table 2: Attack potential and guessing passwords .. 22�

Table 3: Statistics of random mappings ... 34�

Table 4: Statistics of random permutations ... 35�

Table 5: Brief overview of error types of statistical tests .. 43�

Table 6: Typical values of -distribution with 1 degree of freedom .. 45�

Table 7: Typical values of -distribution with degree of freedom d .. 46�

Table 8: Typical values of -distribution for runs ... 47�

Table 9: Typical values of Normal (Gaussian) N(0,1) for a two-sided test of
autocorrelation .. 50�

Table 10: Parameters for entropy test .. 53�

Table 11: Recommended parameter settings for the NIST test suite .. 57�

Table 12: Attack potential, Min-entropy, and recommended length of the internal
state ... 85�

Table 13: Requirements for the parameters in (DRG.1.3) depending on claimed
attack potential .. 87�

Table 14: Work factor and work factor defect for uniform mappings with
equidistributed input ... 111�

Table 15: Probability for a noise alarm within a test suite and the expected number
of noise alarms per year for different distributions of the das-random
numbers .. 115�

2c

2c

2c

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 6

Figures

Figure 1: Min-entropy, collision-entropy and Shannon-entropy for binary-valued
random variables ... 33�

Figure 2: Contingency table for counts of consecutive bits strings .. 59�

Figure 3: Example of PTRNGs that belong to the pre-defined classes PTG.1 and
PTG.2 .. 68�

Figure 4: Example of a PTG.3 and NTG.1 that belongs to the pre-defined class
PTG.3 and NTG.1 .. 69�

Figure 5: Examples of DRNGs that belong to the pre-defined classes DRG.1 and
DRG.2 ... 70�

Figure 6: Examples of DRNGs that belong to the pre-defined classes DRG.3 and
DRG.4 ... 70�

Figure 7: Probabilities of vectors of length n = 10 ... 97�

Figure 8: Success probability (p = 0.55, n = 10) ... 98�

Figure 9: Basic design of RNG with noisy diodes .. 117�

Figure 10: Variant of the basic design of RNG with noisy diodes ... 117�

Figure 11: Examples of self-protection in PTRNG based on noise diodes 120�

Figure 12: RGB Functional model defined in [NIST800-90] .. 121�

Figure 13: Functional design of the Linux NPTRNG ... 128�

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 7

1. Introduction

1.1. Motivation

1 Random Number Generators (RNG) are incorporated in many IT products and play an
important role in numerous cryptographic applications. However, the Information Technology
Security Evaluation Criteria (ITSEC) and the Common Criteria (CC) do not specify any
uniform evaluation criteria for RNG, nor do their corresponding evaluation methodologies
(Information Technology Security Evaluation Manual [ITSEM]) and Common Evaluation
Methodology [CEM]) specify such criteria.

2 The document is intended for use by developers, evaluators and certifiers.

3 Chapter 2 introduces this field, addresses basic concepts, and explains foundations that support
the understanding of the remaining parts of this document. Chapter 3 defines a CC family
FCS_RNG and the extended component FCS_RNG.1 for description of security functional
requirements in protection profiles or security targets. Chapter 4 describes pre-defined classes
for physical true, non-physical true, deterministic and hybrid random number generators. It
sketches RNG specific information and evidence the developer is expected to provide for the
assurance components selected in the ST. The basic concepts and evaluation criteria are
illustrated by additional examples in chapter 5.

4 All software tools referenced in the following paragraphs are freeware. The statistical
calculations may be performed using:

- The BSI test suite for statistical test procedures A and B, which is available on the BSI
website [AIS2031Stat].

- The NIST test suite and guidance documentation [SP800-22], which is available on the
NIST RNG project website describing the implemented tests
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html.

- The statistics program R, which is available on the website www.r-project.org. There
are several books (e.g., [SaHe06], [Prus06], [Ligg07]) describing statistical methods
together with R scripts implementing these methods.

5 This document updates the previous documents [AIS20An] and [AIS31An] used as the
evaluation methodology for RNG in the German CC scheme. The families described in parts 2
and 3 relate to the RNG classes described in [AIS20An] and [AIS31An] as follows (coarse
comparisons):

RNG class Comparable to [AIS20]
or [AIS31] class Comments

PTG.1 AIS31, P1
Physical RNG with internal tests that detect a total
failure of the entropy source and non-tolerable
statistical defects of the internal random numbers

PTG.2 AIS31, P2 PTG.1, additionally a stochastic model of the entropy
source and statistical tests of the random raw

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 8

RNG class Comparable to [AIS20]
or [AIS31] class Comments

numbers (instead of the internal random numbers)

PTG.3 No counterpart PTG.2, additionally with cryptographic post-
processing (hybrid PTRNG)

DRG.1 AIS20, K2, partly K3 DRNG with forward secrecy according to
[ISO18031]

DRG.2 AIS20, K3 DRG.1 with additional backward secrecy according
to [ISO18031]

DRG.3 AIS20, K4 DRG.2 with additional enhanced backward secrecy

DRG.4 No counterpart DRG.3 with additional enhanced forward secrecy
(hybrid DRNG)

NTG.1 No counterpart Non-physical true RNG with entropy estimation

1.2. Abbreviations

6 In this document we use the following abbreviations:

RNG random number generator
DRNG deterministic RNG
TRNG true RNG
PTRNG physical true RNG (short: physical RNG)2
NPTRNG non-physical true RNG
das digitized analog noise signal
iid independent and identically distributed
pp. pages
iff if and only if
{x,y,…} A list x,y,… of indices, e.g., ADV_FSP.{1,2} stands for “ADV_FSP.1 and

ADV_FSP.2”

1.3. Common Criteria (Abbreviations)

PP Protection Profile
ST Security Target
EAL Evaluation Assurance Level
ADV Assurance Development
TOE Target of Evaluation
TSF TOE Security Functionality
SFR Security Functional Requirement

2 To avoid misunderstanding, we do not apply the „straightforward“ abbreviation „PRNG“ because this often

stands for „pseudorandom number generator“.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 9

1.4. Terminology

7 In this document we use the following terminology:

8 Backward secrecy

The assurance that previous output values cannot be determined (i.e., computed or guessed with
non-negligible probability) from the current or future output values.

9 Bit string

A finite sequence of ones and zeroes.

10 Binomial distribution

Binomial distribution with parameters n and p,

11 Black box

An idealized mechanism that accepts inputs and produces outputs, which is designed such that
an observer cannot see inside the box or determine exactly what is happening inside that box.
Contrast with a glass box.

12 Cryptographic boundary

An explicitly defined continuous perimeter that establishes the physical bounds of a
cryptographic module and contains all the hardware, software and/or firmware components of a
cryptographic module. [ISO/IEC 19790]

13 Cryptographic post-processing

A post-processing algorithm that generates the internal numbers of a TRNG by means of a
cryptographic mechanism

14 das-random number

Bit string that results directly from the digitization of analogue noise signals (das) in a physical
RNG. Das-random numbers constitute a special case of raw random numbers.

NOTE: Assume, for instance, that a PTRNG uses a Zener diode. Regular comparisons of the
(amplified) voltage (analogue signal) with a threshold value provide values 0 and 1, which may
be interpreted as das-random numbers. In contrast, for ring oscillators on FPGAs it is not
obvious how to define the analogue signal. At least in the true sense of the word it may be
problematic to speak of ‘das random number’ in this context.

NOTE: In [AIS31An] for physical RNGs the term 'das-random number' was consistently used.
Apart from concrete examples in this document we use the more general term 'raw random
number' for both physical and non-physical true RNGs.

15 Deterministic RNG

{ } (1)k n kn
P X k p p

k
-� �

= = -� �
� �

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 10

An RNG that produces random numbers by applying a deterministic algorithm to a randomly-
selected seed and, possibly, on additional external inputs.

16 Digitization

Derivation process of raw random numbers from raw random signals, usually performed at
discrete points in time.

17 Endorsed algorithm

Cryptographic algorithm endorsed by a certification body for certified products; that is, either a)
specified in an endorsed standard, b) adopted in an endorsed standard and specified either in an
appendix of the endorsed standard or in a document referenced by the endorsed standard, or c)
specified in the list of Endorsed security functions.

18 Enhanced backward secrecy

The assurance that previous output values of a DRNG cannot be determined (i.e., computed or
guessed with non-negligible probability) from the current internal state, or from current or
future output values.

NOTE: The knowledge of the current state of a pure DRNG (with no additional input or with
publicly known input) implies knowledge of the current and future output.

19 Enhanced forward secrecy

The assurance that subsequent (future) values of a DRNG cannot be determined (i.e., computed
or guessed with non-negligible probability) from the current internal state, or from current or
previous output values.

NOTE: The enhanced forward secrecy may be ensured by reseeding or refreshing the DRNG
internal state, which may be performed automatically or initiated on user demand.

20 Entropy

A measure of disorder, randomness or variability in a closed system. The entropy of a random
variable X is a mathematical measure of the amount of information gained by an observation of
X.

21 Entropy source

A component, device or event that generates unpredictable output values which, when captured
and processed in some way, yields discrete values (usually, a bit string) containing entropy
(Examples: electronic circuits, radioactive decay, RAM data of a PC, API functions, user
interactions). Entropy sources provide randomness for true and hybrid random number
generators.

22 External random numbers

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 11

Random numbers used by an application (usually the concatenation of output random
numbers)3.

23 Finite state machine

A mathematical model of a sequential machine that comprises a finite set of admissible states, a
finite set of admissible inputs (seed, and possibly additional input or publicly known input), a
finite set of admissible outputs, a mapping from the set of inputs and the sets of states to the set
of state transitions (i.e., state transition mapping), and a mapping from the set of inputs and the
set of states to the set of outputs (i.e., output function).

24 Forward secrecy

The assurance that subsequent (future) values cannot be determined (i.e., computed or guessed
with non-negligible probability) from current or previous output values.

25 Glass box

An idealized mechanism that accepts inputs and produces outputs. It is designed such that an
observer can see inside and determine exactly what is going on. Contrast with a black box.

26 Human entropy source

An entropy source that includes a random human component (Examples: key strokes, mouse
movement).

27 Hybrid RNG

An RNG that applies design elements from DRNGs and PTRNGs; see also hybrid DRNG and
hybrid PTRNG.

28 Hybrid DRNG

A DRNG accepting external input values besides the seed; i.e., a hybrid DRNG uses an
additional entropy source. Identical output sequences demand identical seeds and identical
external input values.

29 Hybrid PTRNG

A PTRNG with a (complex) post-processing algorithm. The goal of (sometimes additional)
cryptographic post-processing with memory is to increase the computational complexity of the
output sequence.

NOTE: A complex algorithmic post-processing algorithm may be viewed as an additional
security anchor for the case when the entropy per output bit is smaller than assumed.

30 Ideal RNG

A mathematical construct that generates independent and uniformly distributed random
numbers. An ideal RNG can be described by a sequence of independent identically distributed

3 External random numbers are outside the scope of this document.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 12

random variables , , that are uniformly distributed on a finite set ; in our context,

typically or .

31 Internal random numbers

For DRNGs: values of the output function; for PTRNGs: random numbers after post-processing.
The internal numbers are intended to be output upon request by a user.

32 Kerckhoffs’ box

An idealized cryptosystem where the design and public keys are known to an adversary, but in
which there are secret keys and/or other private information that is not known to an adversary.
A Kerckhoffs’ box lies between a black box and a glass box in terms of the knowledge of an
adversary.

33 Known-answer test

A method of testing the correctness of a deterministic mechanism by checking whether for
given input, the mechanism outputs the correct (known) value.

34 Noise alarm

Consequence of an application of an online test that suggests (e.g., due to a failure of a
statistical test) that the quality of the generated random numbers is not sufficiently good.

35 Noise source

Special type of entropy source that consists of dedicated hardware (e.g., an electronic circuit)
used by PTRNGs.

36 Non-physical true RNG

A true RNG whose entropy source is not dedicated hardware but e.g., provides system data
(RAM data or system time of a PC, output of API functions etc.) or human interaction (key
strokes, mouse movement, etc.).

37 Normal (Gaussian) distribution

Normal (Gaussian) distribution with mean and variance , is defined by

.

38 One-way function

A function with the property that it is easy to compute the output for a given input but it is
computationally infeasible to find for a given output an input, which maps to this output.
[ISO/IEC 11770-3].

39 Online test

tX t TÎ W

{ }0,1W = { }0,1
c

W =

m 2s

2 / 2

2

x uX e
P x du

m
s p

-

-¥

-� �£ =	

� �

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 13

A quality check of the generated random numbers while a PTRNG is in operation; usually
realized by physical measurements, by a statistical test, or by a test procedure that applies
several statistical tests.

40 Pure DRNG

A DRNG that does not accept any external input apart from the seed. Identical seed values
result in identical output sequences (random numbers).

41 Physical true RNG (PTRNG)

A RNG where dedicated hardware serves as an entropy source.

NOTE: we use the short term “physical RNG” for physical true RNG as well because all
physical RNG are true RNG by definition. We use the abbreviation “PTRNG” instead of
“PRNG” to avoid confusion with pseudorandom generators.

42 Poisson distribution

Poisson distribution, where is the mean number of events per time interval

43 Post-processing (algorithm)

Transformation of raw random numbers that have been derived from the entropy source into the
internal random numbers

44 Pure PTRNG

A PTRNG without (complex) post-processing. A total failure of a pure PTRNG entropy source
typically results in constant output or periodic patterns if no post-processing algorithm is
implemented, or in outputs of a weak DRNG if a simple mathematical (non-cryptographic)
post-processing algorithm is implemented.

45 P-value

The p-value quantifies the probability that the test values are at least as extreme as the particular
value, which has just been observed (tail probability) if the null hypothesis is true. If this p-
value is smaller than a pre-defined bound, the statistician rejects the null hypothesis.

NOTE: Alternatively, a particular significance level � may be defined before the sample is
drawn.

46 Random number generator (RNG)

A group of components or an algorithm that outputs sequences of discrete values (usually
represented as bit strings).

47 Random variable

l

0,1,2,
() !

0

k

e for k
P X k k

else

ll -�
=�= = 	

��

�

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 14

Mathematical construction that quantifies randomness. A real-valued random variable � is a
function that assigns to each outcome in the sample space a value of R, i.e., .
More precisely, there exist s-algebras of and of for which is a -

measurable function, i.e., for each holds .

48 Raw random number

Raw random numbers are derived at discrete points in time from raw random signals that are
generated by the entropy source of a PTRNG or NPTRNG. Raw random numbers have not been
post-processed. Raw random numbers assume discrete values.

NOTE: For particular types of TRNGs it may not be unique, which discrete values (normally
bits or bit strings) are interpreted as the raw random numbers. The definition of the raw random
numbers may influence their distribution. Of course, for the chosen definition the raw random
numbers must fulfil the requirements that are specified in the respective functionality class.

NOTE: For many types of physical RNGs raw random numbers are computed from analogue
signals that are generated by the entropy source, motivating the notion of das ('digitized
analogue signal') random numbers. Examples are PTRNGs that are based on noisy diodes or
oscillators. For PTRNGs that are based on ring oscillators on an FPGA, for instance, the term
'analogue signal' is less adequate (cf. the first note to das random numbers).

49 Raw random number sequence

Sequence of discrete random values that have directly been derived by digitization from the
output of the entropy source; sequence of raw random numbers.

50 Raw random signal

Randomly changing signal that is provided by an entropy source of a PTRNG, which is used to
generate raw random numbers.

NOTE: In physical experiments and for electronic circuits raw random signals are often time-
continuous and assume values in continuous ranges. For a PTRNG on an FPGA that exploits a
ring oscillator the current state of the inverter chain with time jitter might be interpreted as a raw
random signal.

51 Realization (of a random variable)

Value assumed by a random variable.

52 Refreshing

Use of fresh entropy provided by an internal or external source of randomness in the state
transition function of a hybrid RNG (covers both reseeding and seed-update).

W RX ®W:
s W W Rs R X (,)Rs sW

Rr sÎ ()1X r s-
WÎ

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 15

53 Reseeding

Re-initialization of the internal state of an RNG (typically, a DRNG), depending on external
input (new seed value), but disregarding the current value of the internal state.

54 Seed

Value used to initialize the internal state of an RNG.

55 Seeding procedure

Procedure for initialization, re-initialization and refreshing of the internal state of a DRNG as
described in the guidance documentation.

56 Secret parameter

An input value (optional) to the RNG during initialization.

57 Seed life

The period between the initialization of the internal state of an RNG (typically, of a DRNG)
with a seed value until reseeding / seed-updating the internal state with the next seed value.

58 Seed-update

Renewal of the internal state of an RNG (typically, a DRNG) by considering both the current
internal state and external input data.

59 Signal

Physical carrier of information.

60 State

A state is defined as an instantiation of a random number generator or any part thereof with
respect to time and circumstance.

61 Stationary process

The sequence of random variables is called stationary if for all positive integers � and
, and arbitrary (measurable) sets the following equality holds

.

62 Stochastic model

A stochastic model is a mathematical description (of relevant properties) of a TRNG using
random variables, i.e., a model of the reality under certain conditions and limitations. A
stochastic model used for TRNG analysis shall support the estimation of the entropy of the raw
random numbers and finally of the internal random numbers. Moreover, it should allow to
understand the factors that may affect the entropy.

,..., 21 XX
t

jA

1 1 1 1Pr{ ,..., } Pr{ ,..., }k k t t k kX A X A X A X A+ +Î Î = Î Î

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 16

63 Thermal noise

Inherent production of spurious electronic signals (also known as white noise) within an
electronic component (e.g., an operational amplifier, a reversed biased diode, or a resistor)4, not
desirable for typical applications

64 Total breakdown of an entropy source

The entropy of the future raw random numbers equals 0.

Note: Depending on the concrete RNG design, a total breakdown of the entropy source may
result in constant or short-period sequences of raw random numbers.

65 Total failure test of a noise source

The total failure test of the random noise source detects a total breakdown of random noise
source.

66 True RNG

A device or mechanism for which the output values depend on some unpredictable source
(noise source, entropy source) that produces entropy.

Note: The class of TRNGs splits into two subclasses (PTRNGs and NPTRNGs).

67 Uniform distribution

A random variable X that assumes values on a finite set M is said to have uniform distribution

(or equivalently: X is uniformly distributed) on M if for each .

1.5. Symbols

68 In this document we use the following symbols:

 One-way function of A to B

 Probability that the random variable X assumes the value x

 Probability of the value x (short notation if it is clear which random variable
is concerned)

 Binomial distribution with parameters n and p

 Normal (Gaussian) distribution with mean and variance

4 Typically, in electronic circuits a concentrated effort is exerted to minimize these phenomena. However, this

exact phenomenon can be taken advantage of in the production of random bit streams as it results in some
unpredictable behaviour and, therefore, may be used as an entropy source.

{ } 1
Pr

-
== MmX Mm Î

A BA B

{ }xX =Pr

{ }xPr

),(pnB

),(2smN m 2s

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 17

 Poisson distribution, where is the mean of events per time interval

Addition in GF(2),

 Concatenation of two strings X and Y. The strings X and Y are either both bit
strings, or both byte strings.

Ceiling: the smallest integer greater than or equal to X,

 Floor: the largest integer less than or equal to X,

 For a finite set X the notation denotes its cardinality. If X is a string

denotes its length.

�� � � �
Symmetric group over the set S, i.e., the group of all permutations over
with composition as group operation.

�� � � �
Symmetric semi-group over the set S, i.e., the semi-group of all injective (not
necessarily surjective) mappings � � � with composition as semi-group
operation.

The projection of a vector onto the coordinates

. That is, .

	 Set of natural numbers

 Set of real numbers

� Set of integers

()P o l l

Å 0 0 0 , 0 1 1 , 1 0 1 , 1 1 0Å = Å = Å = Å =

YX

� �X
� � { }nXNnX £Î= min

� �X � � { }XnNnX £Î= max

X X X

S

()w xp
0 1(, , ,)nx x x x= �

{ }1 2, , , 1,ww i i i n= Í�
1 2

() (, , ,)
ww i i ix x x xp = �

n,1 },...,1{ n

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 18

2. Basic Concepts

69 This chapter explains basic mathematical concepts that are applied in the security analysis of
RNGs. At first, we describe the concept of randomness, which is the “core” for any RNG. For
true random sequences, this refers to the entropy source; and for pseudo-random sequences, to
the seed. Probability theory describes and analyzes randomness by means of abstract
mathematical objects, modelling randomness by random variables and random processes.
Statistics links these abstract mathematical models with real-world RNGs by experiments.
These experiments may be used to estimate parameters that describe the models or to test
hypotheses deduced from the models.

2.1. Randomness

70 Subsection 2.1.1 provides an intuitive notion of randomness, which will be made precise in a
mathematical sense in section 2.3.

2.1.1. Concept of Randomness and Random Experiments

71 The core of any non-deterministic (true) random number generator (TRNG) is the entropy
source that, loosely speaking, “generates” randomness.

72 An experiment is called unpredictable if the observable outcome of the experiment is (to a
certain extent) unknown before it is conducted. After the experiment has been performed, the
degree of uncertainty depends on the ability to observe the outcome. In this document we
denote the outcome of an experiment as random if it is unpredictable, i.e., if it cannot be
predicted with certainty. Entropy quantifies the amount of unpredictability relative to the
observer.

73 Experiments are called independent if the outcomes of previous experiments do not influence
the outcome of the current experiment.

74 A random experiment is called unbiased, if each admissible outcome has the same chance of
occurring.

75 Ideal random experiments are unpredictable, independent and unbiased (ideal randomness).
Ideal randomness excludes order and regularity in the sequence of outcomes of repeated
experiments unless these occur by chance. Any deviation from these properties, i.e., dependency
or bias, makes the experiment less random.

76 The goal of any true RNG is clearly to generate ideal random numbers. However, real-world
RNGs can only achieve this goal approximately. The key point of any RNG evaluation is to
verify to what extent the TOE guarantees fulfillment of this goal.

77 How can we determine to what extent an experiment is random (bias, dependencies)? Assume
that an attacker knows the outcomes of many previous experiments. Why should he not be able
to guess future outcomes? It is meaningless to argue about randomness on the basis of a single
run of an experiment or on the basis of a small number of experiments. The “randomness” of an
experiment can only be observed asymptotically. A statistical test that applies a computable
function tests the hypothesis of whether the sequence of outcomes is “typical” in some sense.
Ideal random sequences belong to any (before the observation of the experiments) reasonably
defined “majority” of sequences with overwhelming probability, not showing any regularity

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 19

patterns that can be detected by this statistical test5. Any finite collection of statistical tests can
only check for finitely many types of regularity. A statistical test may not contradict or it may
reject the randomness hypothesis under specific assumptions, but this cannot serve as a proof
for the randomness of an arbitrary experiment. Testing the randomness of RNG output
sequences is computationally hard under “black box assumptions”. Hence, it is important to
understand the nature of the random source to rate the randomness of number generation.

2.1.2. Random number generators (RNGs)

78 Generally, an RNG consists of a non-deterministic part (entropy source) that generates non-
predictable digital data, and a deterministic part that generates from this data the output
sequence of the RNG (random numbers). The non-deterministic part of the RNG exploits a
physical entropy source or any other kind of non-physical entropy source to generate a raw
random number sequence, which is deterministically post-processed. Either the deterministic
part or the non-deterministic part may be omitted, giving a pure PTRNG or a pure DRNG,
respectively.

PTRNG

79 The core of any physical RNG (PTRNG) is the entropy source, which is used to generate the
raw random numbers. By exploiting an analogue signal, a digitization mechanism generates a
sequence of digital “raw” data (raw random numbers; usually das-random numbers).
Additionally, the PTRNG may comprise a post-processing algorithm that transforms the raw
data to internal random numbers.

Note that formally a missing post-processing algorithm can be interpreted as the identity
mapping.

80 Physical entropy sources are based on physical microscopic random processes. Measurements
of these processes result in digital random numbers. Examples of time-discrete physical entropy
sources are:

- Radioactive atomic disintegration: The number of decay events (detected particles) per
time interval follows a Poisson distribution (cf. [Neue04], section 4.1).

- Shot entropy of a diode: The shot entropy of a parallel-plane temperature-limited diode
is non-deterministic. The number of electrons emitted from the tube’s cathode during a
time interval follows a Poisson distribution (cf. [DaR087], section 7-2).

The Poisson distribution implies that the inter-occurrence waiting time between consecutive
events is exponentially distributed.

81 A large number of discrete random events like e.g. emitted electrons may be observed as
analogue entropy signal. Examples of analogue physical entropy sources are (cf. [BuLu08] for
examples):

- Thermal resistive entropy: The voltage between resistors varies randomly due to
vibration of atoms. Ideally, the thermal entropy signal has the same energy in all

5 cf. to Chaitin’s definition of random strings and Martin-Löf tests in e.g. [Cal].

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 20

frequency bands (so called “white entropy”). Sampling an ideally-amplified white
entropy signal generates a sequence of independent bits.

- Diode breakdown entropy: The reverse current through diodes varies randomly due to
tunnelling of electrons. The power of the entropy signal is inversely proportional to the
frequency.

- Free running oscillators generate digital signals with an edge-to-edge random analogue
time drift (jitter). Sampling a fast oscillator by a lower frequency oscillator generates a
random bit signal. If the standard deviation of the slow oscillator is considerably greater
than the fast period, the sampled bit sequence may be expected to be uncorrelated.

82 A typical goal of algorithmic post-processing may be to extract entropy from the das-random
numbers sequence in order to increase the entropy per bit, e.g., to correct a given bias. Note that
increasing the entropy per bit demands data compression, reducing the output rate. A
cryptographic post-processing algorithm may be viewed as an additional security anchor.

NPTRNG

83 A non-physical true RNG (NPTRNG) uses external signals as entropy source to generate
random numbers for output.

84 Examples of such external entropy sources are:

- Processes as disk I/O operations and interrupts (cf. e.g. Linux RNG /dev/random
[GuPR06]).

- System data as tick counter since system boot, process and thread IDs, current local
time (cf. e. g., function CryptGenRandom of Microsoft Windows CE Enhanced
Cryptographic Provider 5.01.01603 [MSCE06]).

- Human interaction as mouse movement and key strokes (cf. PGP key generation
[PGP]).

85 The NPTRNG are based on the concept of randomness as lack of information about processes
and their outcomes. If a huge amount of data from different sources are collected and mapped
onto a shorter sequence (e.g., by a hash function), the output value will appear random to an
observer who neither knows the source data nor is able to control them.

DRNG

86 A deterministic RNG (DRNG) generates random numbers with a deterministic algorithm and
starts with a randomly selected seed. The output sequence depends on the seed and possibly also
on additional external input values.

87 Examples:

- Deterministic random bit generators based on hash functions, as described in
[ISO18031], Annex C.

- NIST-recommended DRNG based on hash functions or block ciphers [NIST800-90].

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 21

88 A DRNG may be viewed as a finite automaton that receives input (seed and possibly also
additional external input). The DRNG updates the internal state (possibly also considering
additional input) and generates output that depends on the current internal state and possibly on
additional input. The DRNG (or more generally, the deterministic part of an RNG) may gain
entropy from the seed and possibly from additional input during the operational work (reseeding
or refreshing). The seed and the additional input may be provided by different sources.

89 A DRNG may be based on the concept of complexity-theoretic randomness (cf. e.g. [Calu02]
for details). The sequences generated by a DRNG then shall be computationally
indistinguishable from random sequences generated by computational power.

Hybrid RNG

90 A hybrid RNG combines the design principles of true and deterministic RNGs, in particular, it
consists of an entropy source and a deterministic part. The entropy source of a hybrid PTRNG
should provide at least as much entropy as the output random numbers might at most contain6.
Loosely speaking, this means that the entropy source must generate at least so much entropy
that a perfect post-processing algorithm might generate an ideal output sequence. A hybrid
DRNG usually gets (considerably) less entropy from the entropy source by reseeding (or
refreshing) than the length of its output measured in bits. Roughly speaking, the security of
hybrid PTRNGs relies on both the entropy of the output sequences and the computational
complexity, while the security of hybrid DRNGs essentially relies on computational complexity.

2.2. Random Numbers in IT Security

2.2.1. Usage of Random Numbers in IT Security

91 Many security mechanisms need secrets, e.g., cryptographic keys or authentication data.
‘Unpredictable’ random numbers are ‘ideal’ secrets for IT security applications. The use of
RNGs as a security mechanism results in requirements on the random numbers, or more
specifically, on their generation.

92 In the terminology of the Common Criteria, RNGs are probabilistic mechanisms. The
vulnerability analysis assesses the strength of permutational or probabilistic mechanisms and
other mechanisms to ensure that they can withstand direct attacks (cf. [CEM], section B.2.1.3,
and chapter 5.7 of this document for details).

93 Guessing a secret by (i) selecting an admissible value; and (ii) checking whether it is correct, is
typical for direct attacks. To increase the success probability, it may be reasonable to formulate
and analyze a stochastic model that considers how the secret has been generated, i.e., the
probability distribution of the admissible values, e.g., a set of passwords or a key space. The
ability to verify guesses depends on the availability of suitable reference data and on the
workload of the checking procedure. A cryptographic key may be guessed independent of the
TOE. If the attacker knows the cryptographic algorithm and sufficiently many plain text / cipher
text pairs, the key can be searched for by means of massive parallel high-speed computations
without any cryptanalysis. Passwords may be found out by trial and error, but the password
mechanism may limit the number of authentication attempts in time (e.g., if human user input is
assumed) and the total number of guesses (e.g., by requirement of the component FIA_AFL.1,
cf. [CCV31_2] for details). From the attacker’s point of view, the situation is clearly much more

6 Cf. paragraph 119 on page 28 for details.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 22

comfortable if he knows some reference string that has been calculated from the correct
password, which allows automatic search.

94 Table 1 describes the link between the maximum success probability of a single guess of a
cryptographic key, the number of security bits, and the assumed attack potential according to
the CC.

Table 1: Attack potential, guessing probability and security bits

Component of the vulnerability analysis Success
probability of a

single guess
Security bits

Common Criteria Version 2.3

Common Criteria
Version 3.1

AVA_VAN.{1, 2}
(basic)

1210e -£ ³ 40 security bits

AVA_SOF.1,
low

AVA_VLA.2
(low)

AVA_VAN.3
(enhanced basic)

 ³ 48 security bits

AVA_SOF.1,
medium

AVA_VLA.3
(moderate)

AVA_VAN.4
(moderate)

 ³ 64 security bits

AVA_SOF.1,
high

AVA_VLA.4
(high)

AVA_VAN.5
(high)

318 10e -£ × ³ 100 security bits

95 As a general rule, the guessing probability for passwords must not exceed the upper bounds
given in Table 2, which depend on the assumed attack potential that is claimed in the security
target. If a probabilistic or permutational mechanism relies on entry of data by a human user
(e.g., the choice of a password), the worst case should be considered.

96 Table 2 describes the link between maximum guessing probability for passwords and the
assumed attack potential according to the CC.

Table 2: Attack potential and guessing passwords

Component of the vulnerability analysis Success
probability
of a single

guess

Success
probability

with blocking
after 3 failed

attempts

Recom-
mended

Common Criteria Version 2.3

Common Criteria
Version 3.1

AVA_VAN.{1,2}
(basic)

AVA_SOF.1,
low

AVA_VLA.2
(low)

AVA_VAN.3
(enhanced basic)

153 10e -£ ×

205 10e -£ ×

e

410e -£ 43 10e -£ × 510e -£

410e -£ 43 10e -£ × 610e -£

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 23

Component of the vulnerability analysis Success
probability
of a single

guess

Success
probability

with blocking
after 3 failed

attempts

Recom-
mended

Common Criteria Version 2.3

Common Criteria
Version 3.1

AVA_VAN.{1,2}
(basic)

AVA_SOF.1,
medium

AVA_VLA.3
(moderate)

AVA_VAN.4
(moderate)

AVA_SOF.1,
high

AVA_VLA.4
(high)

AVA_VAN.5
(high)

2.2.2. Basic considerations for RNG types

97 For a reasonably designed RNG, the generated random numbers should be mutually distinct if
the random numbers are sufficiently long.

98 R1: (statistical unconspiciousness) The application of statistical (standard) black box tests or
test suites does not distinguish the generated random numbers from realizations of uniformly
distributed independent random variables. A more challenging formulation of this requirement
says that statistical tests cannot distinguish between random numbers and realizations of ideal
sequences. (Of course, ‘unfair’ tests, e.g., referring the actual seed value of a DRNG, have to be
excluded anyway.)

99 R2 (backward and forward security): It must (at least practically) be impossible to determine
predecessors or successors of known sub-sequences of output random numbers. The guessing
probability shall be at most negligibly greater than without the knowledge of the sub-sequence.

100 R3 (enhanced backward security): Even if an adversary knows the current internal state of the
RNG, the publicly known inputs (if any exist), and the current and future random numbers, she
shall (at least practically) not be able to determine preceding random numbers; that is, she shall
be able to guess these random numbers only with a negligibly greater probability than without
this knowledge.

Note that the (weaker) backward security demands that previous random numbers cannot be
determined from the current and future random numbers. The knowledge of current or future
output random numbers may be relevant for physical RNG with internal memory (used for the
post-processing algorithm). For a pure DRNG, the internal state and all the publicly known
inputs determine the current and the future random numbers.

101 R4 (enhanced forward security): Even if an adversary knows the internal state of the RNG, all
the publicly known inputs and a sequence of preceding random numbers, she shall (at least
practically) not be able to determine the next random number; that is, she shall not be able to
guess this random number with non-negligibly greater probability than without this knowledge.

410e -£ 43 10e -£ × 510e -£

510e -£ 53 10e -£ × 710e -£

610e -£ 63 10e -£ × 810e -£

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 24

Note that the (weaker) forward security requires that future random numbers cannot be
determined from the current and previous output values. Pure DRNG may fulfil forward secrecy
if the internal state cannot be determined from the knowledge of the current and the previous
output values (random numbers). Forward secrecy under the additional condition that the
current internal state is compromised (enhanced forward security) cannot be achieved by pure
DRNGs. Enhanced forward security may be achieved by hybrid DRNGs if the internal state is
permanently reseeded (or is updated) with data that was generated by a strong entropy source.

102 Requirement R1 is usually verified by a fixed set of statistical black box tests and possibly by
some additional statistical tests that are tailored to the concrete RNG. For true RNGs without a
history-dependent internal state, Requirement R2 is essentially equivalent to the combination of
Requirement R3 and Requirement R4.

103 Requirement R4 cannot be fulfilled by pure DRNGs, since the internal state clearly determines
all subsequent random numbers. Forward secrecy requires sufficient refreshing or reseeding of
the internal state.

104 Requirement R3 may be dropped for devices that are assumed to be secure against all kinds of
attacks that could discover (parts of) the internal state or for devices that are operated in a secure
environment. Requirement R4 may be relevant if it cannot be excluded that an adversary has
unnoticed access to the device and is able to discover the internal state of the device.

2.2.3. Design Description of RNG

Overview

105 The description of the RNG design in general comprises

(1) the entropy source of the non-deterministic part,

(2) the digitization of the raw random signal provided by the entropy source,

(3) any post-processing of the raw random number sequence producing the internal random
numbers,

(4) the deterministic part of the RNG in terms of the internal state, the state transition
function , and the output function ,

(5) the seeding, refreshing (or reseeding) mechanism of the deterministic part of the RNG,
and

(6) any secrets and publicly known input of the deterministic part of the RNG (inclusively,
the generation process and how it is used).

Depending on the RNG design, some of these design elements come from external sources or
they may be trivial as discussed below.

PTRNG

106 The PTRNG design is in general described by

(1) the internal entropy source that generates raw random signals,

j y

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 25

(2) the digitization mechanism of the raw random signal into the raw random number
sequence,

(3) any post-processing of the raw random number sequence generating the internal random
numbers7, secrets and publicly known values (if there are any), and

(4) the online test(s) (applied to the raw random numbers or the internal random numbers), a
tot test (shall detect a total failure of the entropy source), and a start-up test.

107 The post-processing algorithm may comprise a cryptographic one-way function to prevent the
analysis of the raw random number sequence on the basis of knowledge of the RNG output. A
hybrid PTRNG may contain a DRNG for post-processing.

NPTRNG

108 In general the design of a NPTRNG is described by

(1) the external entropy sources continuously providing digital raw random signals as input
to the NPTRNG,

(2) any secrets and publicly known input values (including the generation process and how
it is used) if used by the NPTRNG,

(3) the pre-processing of the raw random number sequence and publicly known input,

(4) the deterministic post-processing of the pre-processed input in terms of the internal state,
the state transition function , and the output function , and

(5) the self-test, if implemented.

109 Usually the entropy source of a NPTRNG provides low-entropy sequences. If directly used for
output these sequences must be compressed. However, in many designs these sequences are
used to update the internal state of a DRNG. Usually, the core of the post-processing algorithm
is a hash function. For a non-physical true RNG, the average entropy of the raw data must at
least equal the output length of the internal random numbers in bits (cf. paragraph 111 for
details on hybrid RNG).

DRNG

110 In general the design of a DRNG is described by

- the seeding procedure that generates the first internal state of the DRNG,

- the generation of the output and the next internal state of the DRNG, and

- the control system for DRNG instantiation, de-instantiation, and limitation for the
amount of random numbers produced after seeding.

The seeding procedure may distinguish between

7 Formally, a missing post-processing may be interpreted as the identity mapping.

j y

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 26

- the instantiation of the DRNG generating the initial internal state using an entropy input
string, and

- the reseeding / refreshing of the DRNG generating the next internal state from the
current internal state and (possibly) an external input string.

111 We describe the deterministic part of an RNG by a 6-tuple , more
precisely:

set of internal states

input alphabet

Routput alphabet

 initial internal state (derived from the seed)8

 (state transition function), (1)

 (output function), (2)

 probability distribution of the initial internal state that is derived from the seed9.

112 For the description of multistep-behaviour of the 6-tuple we derive the extended transition

function *j and extended output function *y over *S I´ ,
1

* k

k

I I
¥

=

= � , where for s SÎ and

1* (, ,) *ki i i I= Î� and
1

* k

k

R R
¥

=

= � hold

* : *S I Sj ´ ® , 1 2 1*(,) ((((,),) ,),)k ks i s i i i ij j j j j -= � � (3)

* : * *S I Ry ´ ® ,

1 1 2 1 2 1*(, *) ((,), ((,),), , ((((,),) ,),)k ks i s i s i i s i i i iy y y y y y y y -= � � � (4)

113 In some cases one may require that j or *y are one-way functions (in a sense discussed
below), i.e. that it is easy to compute the output for a given input but it is computationally
infeasible to find for a given output an input, which maps to this output. For j directly follows

that S I´ shall be sufficiently large preventing exhaustive search of appropriate (,)s i¢ ¢ such

that (,)s i sj ¢ ¢ ¢¢= for a given s¢¢, (,)
s S i I

s s ij
Î Î

¢¢Î � � . For small R the set *R will contain short

In many cases, the seed equals the first internal state.

),,,,,(ApRIS yj

S

I

0s

SIS ®´:j),(:1 nnn iss j=+

RIS ®´:y),(: nnn isr y=

Ap 0s

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 27

output sequences allowing to guess an appropriate (, *)s i¢ such that *(, *) *s i ry ¢ = for a

given *r ,
* *

* (, *)
s S i I

r s ij
Î Î

Î � � . If we require “the extended output function *y being a one-

way function” it requires more precisely the one-way feature for sufficiently long output

sequences *r , i.e. *r l> , where l is big enough that
l

R prevents exhaustive search of

(, *)s i¢ .

114 The 6-tuple is a semiformal10 description of the deterministic part of the RNG. It is not
necessarily formal, because it may not necessarily allow formal proofs as demanded by formal
description languages11. For DRNGs, ‘secrets’ mentioned above may be viewed as part of the
seed or the internal state.

115 The 6-tuple may define a MEALY machine, where the initial (starting) internal state is a random
value derived from a random variable with distribution (this is an extension of the definition
e.g., in [HDCM00]).

116 Apart from the seed, a DRNG may get additional input data while it is in operation. Without
loss of generality, we may assume that an external entropy source generates data

, where denotes a finite set of admissible input values, and the

value is logically equivalent to “no input from an external entropy source in step ”.

Analogously, we assume that denotes a sequence of publicly known

data, where denotes a finite set of admissible input values, and is logically

equivalent to “no publicly known external input in Step ”. Note: the publicly known input
does not provide any entropy to the RNG, but may affect the internal state and the output of the
RNG. In particular, we have and . We define

 for , where is the input to and in Step .

117 If for all , we may simplify the model by “neglecting” the set , i.e., we may set

. Analogously, we may set if no publicly known values are fed into the DRNG
during its life cycle.

118 A pure DRNG runs without any external input after seeding, i.e., for all . The

state function and the output function of the MEALY machine may be simplified to
 with

, and , . (5)

10 “semiformal” means “expressed in a restricted syntax language with defined semantics” (cf. CC part 1

paragraph 81).
11 “formal” means expressed in a restricted syntax language with defined semantics based on well-established

mathematical concepts (cf. CC part 1 paragraph 51).

Ap

}{:,..., 021 oÈ=Î AAaa 0A

o=na n

}{:,..., 021 oÈ=Î BBbb

0B o=nb
n

),,(:1 nnnn bass j=+),,(: nnnn basr y=

BAIbai nnn ´=Î= :),(: 1³n ni j y n

o=na 1³n A
BI = AI =

),(oo=ni 1³n

(, , , ,)AS R pj y¢ ¢

SS®¢:j)(:1 nn ss j ¢=+ RS®¢:y)(: nn sr y ¢=

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 28

Hybrid RNG

119 Whether a hybrid RNG is categorized as a hybrid DRNG (which means that its security
essentially is based on computational complexity) or as a hybrid PTRNG (which means that its
primary security anchor is based on entropy) is not always clear. It may be difficult or even not
clear in concrete cases. Roughly speaking, the classification essentially depends on the relation
between the entropy of the seed-update material (that is, the entropy of the reseeding material),

and the maximum entropy the internal random numbers may attain, namely , which is

provided by ideal RNGs. Let us assume the following:

(1) The sequence of additional inputs is stationary (or more precisely, the

sequence is assumed to be generated by stationary random variables

) and has Min-entropy ;

(2) Within cycles, the state transition function at most slightly reduces the entropy
of the internal state (If the mapping is a permutation over , for
any fixed The entropy of the internal state is not reduced, even if an
adversary knows all external input values.); and

(3) is surjective. If , for a small constant ,

the RNG may behave like a hybrid PTRNG since the non-deterministic part of the RNG
provides at least almost as much entropy as the output sequence may have in the best case.
Note, however, that this does not prove that the entropy of the output is indeed close to

or equivalently, the internal random numbers are (at least almost) uniformly distributed and
independent. This clearly depends on the concrete RNG, i.e., on the state transition function and
the output function, and demands a solid proof. In contrast, if , the non-

deterministic RNG part does not provide sufficient entropy to ensure that the output sequence
can be truly random: The RNG behaves as a hybrid DRNG.

2.3. Mathematical Background

2.3.1. Random variables

120 An experiment is any physically or mentally conceivable undertaking that results in a
measurable outcome12. The sample space is the set of possible outcomes of an experiment.
Unless otherwise stated, in this document we assume the sample space as finite set. The sample
size of an experiment is the number of possible outcomes of the experiment (= cardinality of the
sample space). An event is a subset of . A probability measure on a finite sample space
is a function Pr from the power set of (= set of subsets of) into the interval
satisfying

{ } 1P W = (6)

12 We follow the terminology in [HDCM], chapter 7 Discrete Probability.

R2lg

�,, 21 aa
�,, 21 aa

�,, 21 AA),,(1-+= kii aaHh �

k
SiS ®´ }{:j S

Ii Î

y e-³ Rkh 2lg e

Rk 2lg

RksHh i 2lg)(<<+

W

W W
W W]1,0[

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 29

{ }
11

n n

k k
kk

P A P A
==

� �
=	

� �
�� if the events are mutually disjoint (7)

121 More generally, a probability space is a triple , where

- is a set (not necessarily finite),

- is a -algebra over (By definition, and , and

whenever . Moreover, for any countable sequence .)

- a probability measure on the a -algebra (By definition, is a
function that assigns to each some real number between 0 and 1. In particular,

, and for mutually disjoint events , we have

.)

122 For countable (finite or infinite), we always assume that equals the power set.

123 From a mathematical point of view, a random variable is a function that
assigns to each element an observable value . More precisely, some fixed -
algebra is assigned to , and the mapping is measurable with regard to the
-algebras and . A random variable is denoted discrete if V is countable.

124 In the following, we interpret random numbers as realizations of random variables

. Dealing with random variables allows the use of probabilities in place of relative
frequencies (i.e., in place of empirical probabilities). For ‘real-world’ RNGs, the distribution of
the underlying random variables is usually unknown. Depending on the concrete
design, one may determine a family of distributions to which the true (but unknown)
distribution belongs.

125 In the following, we mainly deal with countable (mostly finite) sets V. We skip measurability
problems and refer the interested reader to the relevant literature.

126 By definition, random variables are said to be independent if for any positive

integer and for any sequence the equality � � � � � � � � � � � � � � � �

� � � � � � � � � � � �� � �� � � � � � holds. For discrete random variables , this condition

simplifies to { } { } { }1 1 1 1, , k k t k t kP X x X x P X x P X x+ += = = = × × =� � for any sequence

.

127 A random variable that assumes values in a finite set is said to be uniformly distributed
(or equivalently: unbiased, equidistributed) if it assumes all with the same probability.
Otherwise is said to be biased. An ideal RNG is characterized by a sequence of
independent, uniformly distributed random variables.

{ }nAAA ,,, 21 �

),,(PSW

W

S s W SÎW SÎÆ SAÎ-W

SAÎ SA
i

i Î
¥

=
�

1

SAA Î�,, 21

P s S]1,0[: ®SP
SsÎ

1)(=WP SAA Î�,, 21

�
¥

=

¥

=

=
11

)()(
i

i
i

i APAP �

W S

X VX ®W:
WÎw Vv Î s

'S V ': W®WX s
S 'S

,..., 21 rr
,..., 21 RR

,..., 21 RR

,..., 21 XX
k SAA k Î,...,1

,..., 21 XX

Vxx k Î,...,1

X V
Vv Î

X

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 30

128 Random variables are called stationary if

{ } { }1 1 1 1, , , ,k k t k t kP X A X A P X A X A+ +Î Î = Î Î� � for any positive integers and and

for any sequence . For discrete random variables, this condition simplifies to

{ } { }1 1 1 1, , , ,k k t k t kP X x X x P X x X x+ += = = = =� � for all .

129 Example 1: Interpret the outcomes of N subsequent tosses of a coin as a realization of random
variables . Since a coin has no memory, we may assume that the random variables

 are independent and identically distributed. This distribution is known as the

BERNOULLI distribution and denoted by , where without loss of generality,

 and . If the coin is fair then the random variables

 are unbiased, i.e. for all holds . In the ‘real world’ for a

particular coin, its parameter is unknown, but can be estimated by experiments. Let the

outcome of the k-th coin toss be denoted as and � � � �� � �� � � ����� ���� � ! """"" � �. For any

,

 as (weak law of large numbers). (8)

This allows a precise estimate of the unknown probability .

130 The real-valued function is a density function if for all and

. For a continuous real-valued random variable (i.e., , where R

denotes the set of real numbers), there exists a density function f such that

 for all .

131 The mean (expected value) of a discrete real-valued random variable is given by

 (9)

For a continuous random variable with density function the mean equals

. (8)

132 If a random variable X assumes binary vectors, , however, no meaningful

definition for the mean is evident. By identifying the binary vectors with

, definition (7) could principally be applied. However, any

meaningful interpretation of the “expected value of ” should take into account that the

,..., 21 XX

k t

SAA k Î�,1

',...,1 Vxx k Î

NTTT ,,, 21 �

NTTT ,,, 21 �
),1(pB

{ } pHeadTj ==Pr { } pTailT j -== 1Pr

NTTT ,,, 21 � Nj ££1 5.0=p
p

kt
0>e

1®
�

�

�
	
�

<- ep
n
h

P n ¥®n

p

RRf ®: 0)(³xf RxÎ

1)(=
¥

¥-
dxxf X RX ®W:

{ } =<<
b

a
dxxfbXaP)(ba <

)(XE X

{ }.)(� ==
k

kXkPXE

X)(xf

¥

¥-
= dxxxfXE)()(

{ }nX 1,0: ®W
),,,(021 xxx nn �--

�
-

=
-- =

1

0
021 2:),,,(

n

k

x
knn

kxxxxb �

)(Xb

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 31

coordinates contribute differently to this sum. Generally speaking, statistics should always
consider (cf. [SaHe06], section 1.4, for details).

133 The variance of a real-valued random variable X is defined by

. Its standard deviation is given by .

134 Given a probability space , a stochastic process with state space is a collection of

real-valued random variables , where and (“time”), i.e., in short,

. If with , the stochastic process is called (time-)discrete.

135 A stochastic process is called stationary if

 (10)

for all k-tuples , and all (measurable) subsets � � � � � � � of # . If the

random variables are discrete (9) simplifies to

. (11)

with real numbers $� � � � $ � .

136 A stochastic process is stationary in wide-sense if
, (12)

for all .

137 A stationary stochastic process is ergodic if statistical properties can be deduced from a single,
sufficiently long realization of this stochastic process. More precisely, assume that for the

(measurable) function , the mean over the time exists. Then

 and (13)

where .

2.3.2. Entropy and Guess Work

138 Let be a random variable over , . We want

to estimate the effort to guess the outcome of an experiment that is viewed as a realization of X.
The optimal strategy is to guess the values until the outcome is found. The lll l -work-

factor denotes the minimum number of guesses to get the result with probability

 if the optimal strategy is applied. That is,

. (14)

139 For the work factor of the optimal strategy meets the following inequality [Plia99]

V

)(XVar
2))(((:)(XXEEXVar -=)(: XVar=s

(, ,)S PW W
),(wtX WÎw Tt Î

{ }TtX t Î: ZT DÍ 0>D

() ()
1 2 1 21 2 1 2, , , , , ,

k kt t t k t t t kP X A X A X A P X A X A X At t t+ + +Î Î Î = Î Î Î� �

1 2(, , ,) k
kt t t TÎ� 0>t

jX

() ()
1 2 1 21 2 1 2, , , , , ,

k kt t t k t t t kP X r X r X r P X r X r X rt t t+ + += = = = = = =� �

() ()t tE X E X t+=
1 2 1 2

() ()t t t tE X X E X Xt t+ +=
,t t Tt+ Î

()
1 2
, , ,

kt t tf x x x�

() ()
1 2 1 2

1
, , , , , ,

2limk k

T

t t t t t t t t tT
T

f x x x f x x x dt
T + + +-

®¥

= � � ()() 1P f E f= =

1 2 1 2, , , , , , ,k kt t t t t t Tt t t+ + + Î� �

X { }nwww ...,,, 21=W)(...)()(21 nppp www ³³³

...,, 21 ww
)(Xwl

,10, << ll

1

() min ()
k

i
i

w X k p xl l
=

� �
= ³	

� �
�

5.0=l

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 32

 (15)

with and (uniform distribution). In

particular,

. (16)

Note that is invariant on .

140 The guess work is the expected number of guesses if the optimal strategy is applied

 (17)

For the most general case, the following inequality provides tight bounds for the guess work

. (18)

141 Chapter 5.1 provides an example of calculation guess work for binary vectors consisting of
independent but biased bits.

142 The logarithm of the denominator (apart from factor 2) in the left side of the inequation (15) is
called Min-entropy

 (19)

143 The Min-entropy represents a special case of the more general notion of RENYI entropy ,

where

, (20)

 (21)

For special cases of a, the RENYI entropy yields the inequations

 (22)

{ } 1/ 2

1,

1
() (1)

2max ()i
i n

w X p u n
p x

Î

� �
� � £ £ � - - × �� �� �
� �

))(,),(),((
21 niii pppp www �=)/1,....,/1(nnu =

1
() , () ,

A
p u p A A a p a a

n n
� �

- = - = ³ ÎW	

� �

up -),,,(21 niii �

1

() ()
n

i
i

W X ip x
=

= �

1
()

2 2
n n

p u W X n p u
-

- £ - £ -

{ }min 2
1,

() log max ()i
i n

H X p x
Î

= -

aH

{ }()�
=

=
-

=
n

i
iXXH

1
2 Prlog

1
1

)(a
a w

a
¥<£ a0

2 minlim () log (max{Pr()}) ()iH X X H Xaa
w

®¥
= - = =

min 2 1 min 2 min, 2H H H H H H< £ < <

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 33

Figure 1: Min-entropy, collision-entropy and Shannon-entropy for binary-valued random
variables

144 The well-known SHANNON entropy may be interpreted as the special case . In particular,
L’Hopital’s rule yields

 (23)

145 Another important special case of the RENYI entropy is the collision entropy . Let and

 be two random independent and identically-distributed variables with values in a finite set

. The collision probability is , and the collision entropy

equals

H1
H2
H 8

H1
H2
H 8

1=a

1 2
1

() Pr() log (Pr())
n

i i
i

H X X Xw w
=

= - = =�

2H X
X¢

W { } { }()2

x

P X X P X x
ÎC

¢= = =�

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 34

. (24)

Let p denote the distribution of the random variable X. Then [CFPZ09] states

. (25)

146 A memoryless binary-valued stationary random source can be described by independent
identically -distributed random variables . The guess work for random

bits, or equivalently for the random vector � � � � � � � � � � � � may be estimated by the SHANNON
entropy [Maur92]

%&'() �
(* � � � + ! � � � �� � � . (26)

More generally, for an ergodic stationary binary random source, the relation between the
guesswork and the length of a sequence tends asymptotically to the SHANNON entropy [Maur92]

, for . (27)

We point out that these assumptions cover nearly all physical RNGs.

2.3.3. Random mappings

147 Let ,� be a random variable that assumes values in }:'{ AAfV ®Í , where is a finite

domain. Consider the sequence))((:1 nn tFt w=+ with for some and . In

terms of the functional graph of)(wF , this sequence describes a path that ends in a cycle. The
functional graphs consist of components, each of which consists of one cycle that is connected
with several trees (0 trees is possible). We address some well-known results on statistics of
random mappings and permutations.

148 Table 3 collects some results on random mappings that are chosen uniformly from ����� , i.e.,

the set of all mappings , (cf. [Flod89] for more details).

Table 3: Statistics of random mappings

Characteristic Expected value as
 Definition and comments

Number of
components

 A component consists of one cycle and several trees
connected to this cycle.

Component size
Largest
component

Number of
cyclic nodes

Cycle length
() The number of edges in the cycle is called the cycle

{ }()2

2 2() log
x

H X P X x
ÎC

� �
= - =� �

� �
�

{ }()
2

2 1 4

x

p u
P X x

ÎC

+ -
= ³

W�

),1(pB nXXX ,...,, 21 n

2
1

log ()
lim ()
n

w X
H X

n
a

®¥
= 0 1a< <

A
tt =0 At Î 0³n

nn AA ® nA =

¥®n

nlog
2
1

3/2n

n7782.0»

2/np / 2 1,253314 nnp »

m 8/np

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 35

Characteristic Expected value as
 Definition and comments

length of , denoted , .
Maximum cycle
length

Tail length ()

The number of edges in the path to the cycle is called
the tail length of , denoted ,

.
Maximum tail
length

Rho length
()

, number of steps until a node on

the path repeats, .
Maximum rho
length

Tree size
Tree size of a node means the size of the maximal
tree (rooted to the cycle) containing this node .

Largest tree

Number of
terminal nodes

Number of nodes without predecessor,
.

Number of
image points

 as number of nodes that have a predecessor,

.

Number of k-th
iterate image
points

,

,

 as number of nodes after application of .

Predecessor size
The predecessor size of the node is the size of the
tree rooted at node or equivalent the number of
iterated pre-images of .

149 Table 4 collects some results on random mappings that are chosen uniformly from the set of all

 permutations of , (cf. [Golo64] for more details).

Table 4: Statistics of random permutations

 Expected value as
 Distribution as

Number of
cycles

Number of cycle of the permutation

normal distribution .

¥®n

t)(tm /8 0,626657 nnp »

n78248,0»

l 8/np t)(tl

/8 0,626657 nnp »

n73746.1»

r 2/np
)()()(ttt mlr +=

/ 2 1,253314 nnp »

n4119.2»

3/n
t

t
n48.0»

ne 1-
1 0,367879e n n- »

ne)1(1--
)(Af

1(1) 0,632121e n n-- »

nrk)1(-

00 =r

)1exp(1 kk rr +-=+

)(Af k kf

8/np
t

t
t

!n nAA =,

¥®n ¥®n

)1(ln oCn ++
�0.57721566C =

nw

{ }))1(1(
ln2

ln2
)ln(

exp
2

o
n

n
nk

kP n +
��
�

�
��
�

� -
-

==
p

w

)ln,(ln nn

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 36

 Expected value as
 Distribution as

Cycle length

Number of cycle of length

POISSON distribution with parameter .

Length of the
largest cycle

Expected cycle
length of a
random element

Probability that a random element lies on a cycle

of size , , is

2.4. Stochastics and Statistical Analysis of Physical RNGs

150 Stochastics and statistical methods are very important tools for the analysis of physical RNGs.
In this section we address stochastic models and statistical tests.

2.4.1. Stochastic model

151 A principal task when analyzing physical RNGs is to identify and analyze those characteristics
of a system or a process that have (significant) impact on the distribution of random numbers.
Other features that are considered to be of subordinate meaning are often neglected. In
particular, precise physical models of ‘real-world’ physical RNGs (typically based on electronic
circuits) usually cannot easily be formulated and are not analyzed.

152 A stochastic model of a physical RNG shall quantify the distribution of the random numbers.
Note, however, that a stochastic model usually is significantly less complicated than a physical
model of the RNG. This advantage of stochastic models is linked with loss of information. In
fact, unlike a precise physical model, a stochastic model does not provide the distribution of the
random numbers as a function of the characteristics of the components of the entropy source.
Ideally, a stochastic model provides a class of probability distributions that contains the true but
unknown distribution of the internal random numbers (which, at least in a strict sense, depends
on the particular device). The stochastic model should at least provide a class of distributions
that contains the distribution of the das-random numbers or of ‘auxiliary’ random variables if
this allows to establish a lower entropy bound for the internal random numbers. These
distribution classes usually depend on one or several parameters that may be estimated on the
basis of sampled random numbers.

153 Of course, the stochastic model should be checked against empirical data and, if necessary, be
corrected and adjusted. Of course, it is advisable to formulate the model as simple as possible to
reach the specified goal.

154 As pointed out above, stochastic models may consider:

- the raw random number sequence,

¥®n ¥®n

ln (1)
n

n C o+ +

nlw l

{ } ()
!
/1exp

kl
l

kP knl

-
==w

l/1=l

n6243.0»

1
2

n+
x

k k n£ () 1
()P x k

n
w = =

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 37

- ‘auxiliary’ random variables (cf. [KiSc08], for instance), and

- the internal random numbers.

155 Stochastic models of the raw random number sequence or of auxiliary random variables focus
on the entropy source and the digitization of its analogue raw random signal in order

- to estimate the entropy of the raw random number sequence, and

- to assess the factors that may affect the quality of the raw random number sequence.

156 Stochastic models of internal random numbers additionally consider the algorithmic post-
processing of the digital entropy signal

- to assess the effect of the post-processing, and finally

- to verify the quality of the RNG output.

157 The digitized entropy signal may be used directly as internal random numbers or as input for a
non-trivial post-processing algorithm. Of course, the first case may be interpreted as a trivial
post-processing algorithm (identity mapping). The goal of non-trivial post-processing
algorithms may be to increase the average entropy per bit (which demands data compression),
simply to smear simple dependencies of das-random numbers, or to obtain a further security
anchor if the post-processing algorithm consists of strong cryptographic primitives.

158 The digitized entropy signal (or auxiliary random variables or internal random numbers) may be
described by a (time-discrete or time-continuous) stochastic process �-� �� � � . � � , where

denotes the distribution of the sample function , which depends on a set of , .
The set specifies the admissible parameter sets and shall contain the true parameter value
under operational conditions. As mentioned above, the estimate of the entropy, or at least of

lower entropy bounds, grounds on these distributions . The parameter set may depend

on factors such as the concrete entropy source e, operational conditions of the RNG o, and
aging13 over the life-time t of the RNG. Formally, the parameter set depends on e, o and t,
i.e. . Usually, these dependencies are difficult to quantify. However, it is essential that
the parameter set remains in the specified set ; otherwise, the stochastic model and
consequently, the derived entropy bounds, are no longer valid (at least they are no longer
reliable). The online test shall detect if the true parameter leaves the ‘agreeable’ part of the
parameter set, which may result in insufficient entropy.

159 The influence on clearly has impact on the environmental protection of the entropy source
(e.g., by stabilization of the power supply, filters and sensors) and the assessment of the
vulnerability by aimed manipulation attacks on the operational condition of the entropy source.

160 The following examples discuss stochastic models for theoretical examples. Practical (more
complicated) examples of stochastic models can be found, e.g., in [KiSc08] and [BuLu08].

13 Aging is a long-time process and does not prevent assumption of stationarity of the entropy source in shorter

time frames.

()P p
),(wtX p p ÎP

P p

()P p p

p
(, ,)e o tp

p P

p

p

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 38

Example 3: Urn model of ideal RNG

161 Example 3 considers an urn model , with distinguishable balls (numbered from 1 to).
Drawing a ball provides a random number between 1 and . The outcome is recorded and the
ball is put back into the urn. models an ideal RNG that generates independent and

uniformly distributed random numbers in the range .

162 One may compare a ‘real-world’ RNG (true or deterministic), that is, its output sequences, with
the statistical properties of . This may give an indicator for similarities and differences
with ideal RNGs. The evaluator may count frequencies, consider consecutive output values, etc.
to compare the (empirical) distribution of the random numbers with the hypothesis of uniform
distribution.

163 We note that one may also consider another urn model to describe characteristics of an

ideal RNG. The model consists of numbered urns into which balls are randomly put

with regard to uniform distribution. considers the output frequencies for an ideal RNG,

but unlike , it ignores the order of the outcomes (cf. [MeOV97]).

164 After balls have been drawn from an urn with balls (urn model), the probability for
a collision (i.e., at least one ball has been selected at least twice) is

 (28)

For large and , STIRLING’S formula yields with

. Consequently,

() 0.5 0.5. 1 n k k k nP n k n k e- + - - -» - . (29)

If and , then

() ()
2

1/ 2(1)
, 1 exp 1 exp

2 2
k k k

P n k O n
n n

- � �-� �® - - + » - -� �� �
� � � �

 (30)

For large , the expected number of drawings until the first collision is approximately

. (31)

165 Now consider the case where balls in an urn are distinguishable, but the balls may be drawn
with different probabilities. By , we denote the probability that ball is drawn, and

 , while denotes the labels of the drawn balls. The conditional

probability for a collision in step k under the condition that no collision has occurred so far

)(n��� � n n
n

)(n��� �

n,1

)(n��� �

)(n��� � ¢
)(n��� � ¢ n

)(n��� � ¢
)(n��� �

k n)(n��� �

1

)1()2)(1(
1),(-

+-××--
-= kn

knnn
knP

�

n k �
�

�
�
�

� Q
+-= +

n
nnn n

12
exp2! 2/1p

10 <Q<

)(nOk = ¥®n

n 0n

0() / 2E n np=

n

ip i

1 2(, , ,)np p p p= � 1 2 3, , ,i i i �

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 39

clearly equals . For the given sequence , the probability for a collision in most

 drawings is

. (32)

Obviously, , and for , we

obtain (cf. formula (18) for the definition of Min-entropy)

. (33)

Note that is a lower bound of the ½-guess-factor for distribution .

Example 4: Radioactive decay digitized by a Geiger counter [Neue04]

166 In Example 4 we consider a stochastic model of the PTRNG that consists of a random vector
(, ,). The random variable models the behaviour of the entropy while and
correspond to the das-random numbers and the internal random numbers, respectively.

167 The entropy source is a radioactive source that emits particles that are detected by a Geiger
counter. The random variable is described by the random variables that

model the intermediate times between consecutive impulses. For a reasonable lifetime of the
RNG14 we may assume that the random variables are independent and identically

exponentially distributed with , where is the expected intermediate

time between the impulses. Under this assumption, the number of impulses within any fixed

time interval of length is POISSON distributed with parameter , .

168 Under the assumption that the detection mechanism is able to measure the intermediate times
exactly, the random variables describe the measured intermediate times. The

following Lemma says that the measured intermediate times can be used to generate random
numbers

 (30)

that are uniformly distributed on the unit interval .

14 The mean number of impulses decreases over time, depending on the half-life of the radioactive source; e.g.,

the half-life of Caesium-137 is 30.23 years.

1

1
j

k

i
j

p
-

=
� 1 2 3, , ,i i i �

k

()
1

1 1

, 1 1
j

k l

i
l j

G k p p
-

= =

� �
= - -� �

� �
Õ �

{ } { }
1,..., 1,...,

1

max / 1/ max
j

l

i j j
j n j n

j

p l p l p
= =

=

� �£ × £ � �� �� k { }
1,...,

1/ max jj n
l p

=

� �< � �� �

minH

{ } ()min ()

1,...,
(,) , 1/ max , 2H p

j
j n

G k p P k p P k
=

� �� � � �£ =� � � �� �� �� �

min () 12H p -
1/ 2()w p p

x z h x z h

x { }�,3,2,1=iTi

iT

{ } t
i etTP ×--=< q1 q/1

N

t tql = { }
!

ke
P N k

k

ll -

= =

{ }�,3,2,1=iTi

)/(1222 ++= iiii TTTR
)1,0[

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 40

Lemma 1: Let and be identically exponentially distributed random variables with

parameter . Then is uniformly distributed on .

169 However, a ‘real-world’ detection mechanism is not able to measure the intermediate times
between two impulses of the Geiger counter exactly, but only in multiples of a positive constant
(= length of a clock cycle; without loss of generality, we assume that this constant equals 1
within this example). If multiple impulses occur within one clock cycle, they are only counted
once. The random variable is given by a POISSON process which considers the

number of measured impulses until time , i.e., is POISSON distributed with .

170 The random variables quantify the time (expressed as multiples of the clock

length) when the 1st, the 2nd, … impulse is observed. More precisely, and

 for . The random variables

describe the random intermediate times between consecutive impulses. The random variables

 are independent and identically distributed. More precisely, is geometrically

distributed with parameter . If and denote the cumulative distribution function

of random variables and , the term quantifies the

distance of their distributions (cf. formula (14) above).

Lemma 2: Assume that and are independent geometrically distributed random
variables with parameter , while stands for a uniformly distributed random

variable, the unit interval . Then satisfies the inequation

. (34).

171 Note that the RNG post-processing algorithm may take the property of the detection mechanism
into account. Instead of following (30), one may calculate

 (35)

Lemma 2 allows to estimate the deviation of from a uniformly distributed random variable

on the unit interval.

Example 5: Random mapping model for a pure DRNG

172 A pure DRNG may be modelled as follows:

- The state transition function is uniformly selected from some set (during
the design of the DRNG, this selection is fixed for all instantiations of the TOE).

X Y

0>q
YX

X
U

+
=:)1,0[

z { } 0³ttN

t tN tl

{ }�,3,2,1ˆ =iSi

0:ˆ
0 =S

{ }NÎ+³=
-

kNNkS
iSki ,1min:ˆ

1
1³i { }�,3,2,1ˆ =iTi

iT̂ ˆ 1iT -
q-- e1 XF YF

X Y { }sup () ()X Y X Y
x R

F F F x F x
¥

Î
- = -

1-¢X 1-¢Y
qq --=¢ e1 U

)1,0[
1

5.0
:

-¢+¢
-¢

=¢
YX

X
U

1
tanh 1 exp

2 2 2U UF F
q q

¢ ¥

� � � �£ - £ - -� � � �
� � � �

).1ˆˆ/()5.0ˆ(ˆ 1222 -+-= +iiii tttr

iR̂

),,,,(ApRS yj ¢¢

SS®¢:j F

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 41

- The output function is uniformly selected from some set (during the
design of the DRNG, this selection is fixed for all instantiations of the TOE).

- The initial state is viewed as a realization of a random variable that is -

distributed on the set . This random variable describes the instantiation of the DRNG
during the operational usage of the TOE. The initial state may depend on several

non-deterministic data, which may be randomly selected at different time instants and
different conditions, e.g., on a cryptographic key that is selected during personalization
of the TOE, on a binary seed string selected when the device is powered on, on a binary
string that is regularly refreshed, etc.

173 The choice of and has significant impact on properties of the DRNG. The next
paragraphs address some characteristics if or contain injective15 (not necessarily
surjective16) mappings or bijective17 mappings (i.e., permutations). In the following, we briefly
speak of “mappings” in the first case and of “permutations” in the second case.

174 Assume that , i.e., that the state transition function is a permutation that is
selected uniformly from all permutations over . The state transition function saves the entropy
of the internal state, since for each . For , the entropy may be

reduced while the DRNG is operated, since . In particular, one may expect that the

number of admissible internal states has been reduced to (cf. expected number of cycle

nodes) after steps (cf. Table 3; expected rho length). If the initial internal state has

entropy , then the cycle states will have entropy of about .

175 If and are permutations, the period of the output values (internal random numbers) equals

the length of the cycle of that contains the initial state. If both and consist of only

one cycle, the period of the output values is , regardless of . Note that if this DRNG is

reseeded (with = uniform distribution on) before each output of a random number for

large and , the probability for a collision is (cf. birthday

paradox in [MeOV97]).

2.4.2. Overview of Statistical Tests

176 Statistical testing links a stochastic model to the real-world object of investigation. Without
verification by statistical tests, the stochastic model provides only assumptions on the behaviour
of a real-world IT system, but no evidence (unless the design is very simple (as repeated coin
tossing) and has been understood very well from a theoretical point of view). In particular, this
is the case for the analysis of a (physical) RNG. Statistics with empirical data are necessary to
develop, confirm, and adjust a stochastic model, and finally to understand the source of
randomness that is exploited by the RNG and the stochastic properties of the random numbers.

15 BAf ®: is injective if 1)(1 =- bf for all /�0 � � � .

16 BAf ®: is surjective if for each BbÎ , there exists an Aa Î with)(afb = .
17 A function is bijective if it is injective and surjective.

RS®¢:y Y

0s¢ 0S¢ Ap
S

0s¢

F Y
F Y

()SG SF = j
S

()S Sj = j ÎF ()SH SF =
SS Í)(j

8/np

2/np
lg n 2/)(lgn

f y
j y� f y

S Ap

Ap S

S ()SOn = ()Sn 2/exp 2-

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 42

177 Statistical analysis distinguishes between explanatory variables and response variables of an
experiment. Response variables quantify the outcome of an experiment. For RNGs, response
variables may be the random entropy signal, the digitized entropy signal, or internal random
numbers. Explanatory variables describe the conditions under which the experiment is
conducted. For a PTRNG, an explanatory variable may be the temperature, which may affect
the entropy source and finally the random numbers.

178 An interesting question is to what extent the response variables depend on a variation of the
explanatory variables. Such dependencies may be very different (and difficult to quantify). The
average voltage of the power supply may reduce the voltage entropy source and cause a bias in
the RNG output. A high resolution measurement of power consumption might provide
information on single bits of the output data. The analysis of the TOE should consider the
question of whether variations of some explanatory variables may cause significant changes of
relevant statistical properties of the generated output data, which in turn might be exploited by
an attacker. Generally speaking, the permitted ranges for the explanatory variables must be
specified such that the quality of the random numbers is guaranteed for all these parameters.

179 The data types of the explanatory variables and the response variables may have different types
and scales. A variable is called categorical if we can only determine whether two values and

 are equal () or different (). A typical example of a categorical variable is
output strings of RNGs. The appropriate interpretation as integers or real numbers depends on
their usage, which is normally not linked to the generation process. A variable is called
continuous if it can take on real numbers (within the limited resolution of measurement device).
This allows several operations of continuous variables:

- Ordinal scale allows to distinguish data, namely whether , or
.

- Interval scale allows to distinguish data, namely whether , or
. Further, the difference can be compared; examples of interval

scaled data are temperature in °Celsius or date.

- Relation scale allows to distinguish data, namely whether , and
. Further, the difference and quotient can be

compared; examples of interval scaled data are temperature in °Kelvin, power in
Ampere, period in seconds.

180 In this section we describe some statistical standard tests for sequences of binary-valued random
numbers that have been generated by an RNG. The response variable ‘binary-valued’ random
number is categorical, which limits the variety of appropriate statistical methods to counts of bit
strings. These statistical tests do not explicitly consider any explanatory variables of the RNG,
although the response values clearly may implicitly depend on the explanatory variables (power
supply of PTRNG, time since power-up etc.) Other response variables, such as the analog
entropy signal, are continuous and require other statistical tests.

181 Unless otherwise stated the null hypothesis for the statistical tests below is that the tested data
were generated by an ideal RNG. However, since real-world RNGs are never ideal, it is also
reasonable to take distributions into account that are not too ‘far’ from independent and
uniformly distributed random numbers.

A
B A B= A B¹

A B= A B¹
A B C< <

A B= A B¹
A B C< < :d A B= -

A B= A B¹
A B C< < :d A B= - /q A B=

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 43

182 The statistician may commit two types of errors. We explain both types of errors by an example.
The null hypothesis supposes that an unknown parameter is contained in some set ,

, while the alternative hypothesis is given by . Further, let denote the

statistical test value, , the critical set (yielding the rejection of the null hypothesis), and

.

Table 5: Brief overview of error types of statistical tests

 Reality

Null hypothesis Null hypothesis is true Null hypothesis is false

Test rejects the null
hypothesis

Error Type 1
(with probability)

correct decision
(with “power” = probability)

Test does not reject
the null hypothesis

correct decision
(with probability)

Error Type 2
(with probability)

183 Roughly speaking, the null hypothesis is rejected if the test data indicate that the null hypothesis
is sufficiently unlikely. One may select between two approaches to define the probability of
error type 1.

Predefined level significance: The significance level is selected before the experiments are
conducted. By definition, is the maximum probability among all hypotheses in H0 that the
null hypothesis is rejected (although it is true). The test suite below follows this approach. We
note that for many statistical (non-cryptographic) applications and are
typical significance levels. For statistical standard tests, the critical regions are tabulated for

common values .

P-value approach: If the p-value is smaller than a pre-defined bound, the statistician rejects the
null hypothesis or he continues testing. The NIST test suite [STS] follows this approach.

184 Note that a true statistical hypothesis may be falsified: If the statistical test fails, the Null
hypothesis is rejected. If the test value is not very unlikely, this does not confirm the Null
hypothesis. Statistical tests cannot confirm the Null hypothesis. But the absence of evidence
is not evidence of absence. The statistician decides whether he continues or stops testing on the
basis of the number of conducted tests. The criteria that cause the end of testing depend on the
necessary (claimed) assurance that no deviation of the RNG from ideal RNG can be found or
used in practical attacks.

0H J Q

0 :H J ÎQ :AH J ÏQ t

Ka

()supP t Ka
J

a J
ÎQ

= Î

0H a

{ }0P t K Ha aÎ £

1 b-

{ } 1AP t K Ha bÎ ³ -

0H
1 a-

{ }0 1P t K Ha aÏ ³ -

b

{ }AP t K Ha bÏ £

a
a

0,05a = 0,01a =
Ka

a

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 44

185 The statistical tests below assume that the RNG output values , are binary bit

vectors, . The tests T0 - T8 are used in two statistical

tests suites. We specify the input values, and explain the computation of the test value and the
evaluation rules. For some distributions, the error type 1 probabilities are given. The statistical
tests T0, T6, T7 and T8 are applied to binary sequences that are formed from consecutive
random numbers.

2.4.3. Standard Statistical Tests

186 This section describes a standard statistical test suite available on the BSI website
https://www.bsi.bund.de/ContentBSI/Themen/ZertifizierungundAnerkennung/Zertifierungnach
CCundITSEC/AnwendungshinweiseundInterpretationen/AISCC/ais_cc.html. Tests T1 to T4 are
specified in [FI140-1] (power-on tests).

187 We assume that the input values of the statistical tests are realizations of random variables,
which are denoted by identical but capital letters. Apart from Test T7, the null hypothesis says
that the test data were generated from an ideal RNG. Note, however, that in our context, the
rejection probabilities for other distributions also are very interesting, since real-world RNGs
are not ideal.

Disjointness Test

188 The disjointness tests tests the coincidence of non-overlapping patterns in a sequence seen as an
urn model.

189 Test T0 (disjointness test)

Input:

Description and Evaluation rule:

The input sequence passes the disjointness test if and only if its elements are

mutually disjoint.

Rejection probability for an ideal RNG: .

Monobit Tests

190 The monobit test tests the bias of a {0,1}-valued sequence. Let denote the number of zeros

and the number of ones in a sequence of length n. Then gives the

(empirical) bias of this sequence. If a sequence is a realization of independent random variables

- the Min-entropy of the sequence of random variables may be estimated by
, and

- its SHANNON entropy may be estimated by
2

1

2
1

log 2e

H n
d� �

» -� �
� �

 for small bias.

Niri Î, f

() { } f
rffrfri bbbr 1,0...,,, 2)1(1)1(Î= +-+-

{ }48

221 1,0...,,, 16 Îwww

161 2 2
, , ,w w w�

172-

0n

1n 0 1: () / 2n n nd = -

min 2(,) log (0.5)H n nd d= - +

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 45

191 General Monobit Test [MeOV97]

If we denote the number of zeros and the number of ones in a sequence of n bits, ,

then a potential attacker might try to combine information gained from many signatures.

is approximately -distributed with 1 degree of freedom. Table 6 contains the

critical regions for typical significance levels. More precisely, the table specifies boundary

values , such that for any random variable that is -distributed with

1 degree of freedom18. Alternatively, one may apply the central limit theorem. More precisely, .
122� �

� 345678�

56789�
 is :�;� � -distributed.

Table 6: Typical values of -distribution with 1 degree of freedom

Error probability 0.05 0.01 0.001 0.0001 0.00001 0.000001

-value for the tail

probability p,
3.841459 6.634897 10.827566 15.136705 19.511421 23.928127

192 Test T1 (monobit test [FI140-1])

Input:

Bit sequence

Test value:

 (36)

Evaluation rule:

The bit sequence passes the monobit test if and only if

.

Rejection probability for an ideal RNG: + ; 4< (Central Limit Theorem: =6> � ; 4?)

Remark: The lower and the upper bound of relates to the frequency of zeros (or ones)

. If the relative frequency equals the (true) probability within these

borders the Min-entropy is at least 0.9509269 and the SHANNON entropy is at least 0.9991363.

18 The quantiles of the 2c -distribution may be calculated, e.g., using function qchisq(p,df) of the tool R

available on the website www.r-project.org.

0n 1n 10n >

2
0 1

1

()n n
T

n
-¢= 2c

2
ac { }2 2ˆP ac c a³ £ 2ĉ 2c

2c

a

2
ac

1d =

{ }1,0...,,, 2000021 Îbbb

�
=

=
20000

1
1

j
jbT

2000021 ...,,, bbb

103469654 1 <<T

1T 0f

()0 0.4827,0.5173f Î

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 46

Block Tests

193 General Block Test [MeOV97]:

Divide a binary sequence of length n in non-overlapping blocks of length m and assume that

5 2mn
m

� � ³ ×� �� �
. Identify the admissible m-bit blocks with the binary

representations and define in as number of blocks with value i . Under the null

hypothesis, the test statistic

 with (37)

is approximately -distributed with � � @ A B degrees of freedom. Table 7 contains the
critical regions for typical significance levels. More precisely, the table specifies boundary

values such that for any random variable that is -distributed with

d degrees of freedom.

Table 7: Typical values of -distribution with degree of freedom d

Error probability 0.05 0.01 0.001 0.0001 0.00001 0.000001

, 3.8415 6.6349 10.8276 15.1367 19.5114 23.9281

, 7.8147 11.3449 16.2662 21.1075 25.9018 30.6648

, 14.0671 18.4753 24.3219 29.8775 35.2585 40.5218

, 24.9958 30.5779 37.6973 44.2632 50.4930 56.4934

, 293.2478 310.4574 330.5197 347.6542 362.9888 377.0781

194 Test T2 (poker test [FI140-1])

Input:

Bit sequence

Description:

 and for .

1 2 0(, , ,)m mc c c- - �

1

0

2
m

j
j

j

i c
-

=

= �

2 1
2

2
0

2
mm

i
i

T n k
k

-

=

� �
¢= -� �

� �
� :

n
k

m
� �= � �� �

2c

2
ac { }2 2ˆP ac c a³ £ 2ĉ 2c

2c

a

1m = 1d =

2m = 3d =

3m = 7d =

4m = 15d =

8m = 255d =

{ }1,0...,,, 2000021 Îbbb

4 3 4 2 4 1 48 4 2j j j j jc b b b b- - -= + + + { }[] jf i j c i= = 1, ..., 5000j =

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 47

Test value:

 (38)

Evaluation rule:

The sequence passes the poker test if .

Note: For an ideal RNG, the test value is -distributed with 15 degrees of freedom.

Rejection probability for an ideal RNG: 6; C � ; 4< (D(-approximation)

Runs Tests

195 General Runs Test [MeOV97]:

The expected number of 0-runs (or 1-runs) of length i in an independent unbiased binary
sequence of n bits is

. (39)

Let the observed number of l -runs, , and k be equal to the largest integer i

for which The statistic used is

() ()2 2

3
1 1

ˆ ˆ(, ,0) (,) (, ,1) (,)

(,) (,)

k k

i i

r n i r n i r n i r n i
T

r n i r n i= =

- -
¢= +� � , (40)

which approximately follows a -distribution with degrees of freedom. Table 8
contains the critical regions for typical significance levels. More precisely, the table specifies

boundary values such that for any random variable that is -

distributed with d degree of freedom. Additionally, Table 8 provides the link between the run
length k and the degrees of freedom d.

Table 8: Typical values of -distribution for runs

Error probability 0.05 0.01 0.001 0.0001 0.00001 0.000001

, 3.84146 6.63490 10.82757 15.13670 19.51142 23.92813

, 7.81473 11.34487 16.26624 21.10751 25.90175 30.66485

, 11.07050 15.08627 20.51501 25.74483 30.85619 35.88819

� =
-=

5000

0

2
2 5000][

5000
16

i
ifT

1 2 20000, , ...,b b b 21.03 57.4T< <

2c

(,)r n i

2(,) (3) / 2ir n i n i += - +

ˆ(, ,)r n i l { }0,1l Î

(,) 5.r n i ³

2c 2 1k -

2
ac { }2 2ˆP ac c a³ £ 2ĉ 2c

2c

a

1k = 1d =

2k = 3d =

3k = 5d =

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 48

Error probability 0.05 0.01 0.001 0.0001 0.00001 0.000001

, 14.06714 18.47531 24.32189 29.87750 35.25854 40.52183

, 16.91898 21.66599 27.87716 33.71995 39.34065 44.81094

, 19.67514 24.72497 31.26413 37.36699 43.20596 48.86564

196 Test T3 (runs test [FI140-1])

Input:

Bit sequence

Test values:

(){ }3 1 1 1 1(,) 1,20000 , ,..., , , 1, ... , 1i i i i i i i i i iT p i b b b b b b b b p b bl l l l ll - + + + - + + + += Î = Å = = = = Å

where, { }0,1pÎ , , , , i.e., the test values

are numbers of ; - and -runs. A run is a maximum sub-sequence of consecutive zeroes or ones.

Evaluation rule:

The input sequence passes the run test if and only if

 and (41)

 (42)

i.e., the number of the occurring runs of zeroes and ones with lengths 1, …, 5 and the sum of all
runs of zeroes and ones with lengths greater than 5 lie within the permitted intervals, as
specified below.

Run length l Lower bound of the interval Upper bound of the interval

1 2267 2733

2 1079 1421

3 502 748

a

4k = 7d =

5k = 9d =

6k = 11d =

{ }1,0...,,, 2000021 Îbbb

0 1: 1b b= Å 1, 2, ..., 20000l = 20001 20000: 1b b= Å

1 2 20000, , ...,b b b

{ })(),()(:5,11,0 3 llll MpTmp ££Î"Î"

)6()1,(,)0,()6(
20000

6
3

20000

6
3 MTTm ££ ��

== ll

ll

)(lm)(lM

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 49

Run length l Lower bound of the interval Upper bound of the interval

4 223 402

5 90 223

³ 6 90 223

Rejection probability for an ideal RNG:

197 Test T4 (long run test [FI140-1])

Input:

Bit sequence

Description:

A run of length is called a long run.

Evaluation rule:

The input sequence passes the long run test if and only if

 (43)

i.e., if no long run occurs.

Rejection probability for an ideal RNG:

Autocorrelation Test

198 Autocorrelation Test [MeOV97]:

Let be a binary sequence, d a fixed integer, ,

, where denotes the XOR-sum operator and a sum of real

numbers. We consider the test statistic

5 5
ˆ (,) 2 (,)

2
n d

T n d S n d n d
-� �= - -� �

� �
, (44)

which approximately follows an the Normal (Gaussian) distribution with mean 0 and
variance 1 if . A two-sided test should be applied. Table 9 provides typical values
for a normal (Gaussian) distribution with mean 0 and variance 1 for two-sided tests. More

)(lm)(lM

610-

{ }1,0...,,, 2000021 Îbbb

34³

2000021 ,,, bbb �

{ } 0),(:20000,341,0 3 =Î"Î" pTp ll

610-

{ }0 1 1(, , ,) 0,1
n

ns s s s-= Î� 1 / 2d n£ £ � �� �
1

5
0

(,) ()
n d

i i d
i

S n d s s
- -

+
=

= Å� Å S

(0,1)N
10n d- ³

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 50

precisely, denotes the a/2-Quantiles

. (45)

Table 9: Typical values of Normal (Gaussian) N(0,1) for a two-sided test of autocorrelation

Error probability 0.05 0.01 0.001 0.0001 0.00001 0.000001

 1.959964 2.575829 3.290527 3.890592 4.417173 4.891638

199 Test T5 (autocorrelation test)

Input:

Bit sequence

parameter

Test value:

 (46)

Evaluation rule:

The input sequence passes the autocorrelation test (with shift t) if and

only if .

Rejection probability for an ideal RNG and for each shift parameter :

Multinomial Distributions Tests

200 Multinomial Distribution Tests constitute special cases of contingency tables, which will be
discussed in Section 2.4.5.2.

201 Test T6 (uniform distribution test)

Input:

- parameter (length of the vectors to be tested)
- parameter (length of the sequence to be tested)
- parameter (positive real number)

- sequence of k-bit words ,

Test value:

(0,1)(/ 2)NQ a

{ }5 (0,1) 5 (0,1)
ˆ ˆ(/ 2) (/ 2)N NP T Q T Qa a a£ - Ú ³ £

a

(0,1)(/ 2)NQ a

{ }1,0...,,, 1000021 Îbbb

{ }5000...,,2,1Ît

5000

5
1

() ()j j
j

T b b tt +
=

= Å�

1000021 ...,,, bbb

2674)(2326 5 << tT

{ }5000...,,2,1Ît 610-

k
n
a

),,,(21 nwww � { } niw k
i ,,2,1,1,0 �=Î

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 51

 for all (47)

Evaluation rule:

The sequence passes uniform distribution test with parameters

if

 for all (48)

Special case :

The sequence passes the uniform distribution test if

 (49)

202 Test T7 (comparative test for multinomial distributions aka ‘test for homogeneity’)

Assumption:

We assume that the random variables describe independent repetitions of

the random experiment, and that these random variables are independent and identically

distributed for each fixed . The distribution of is given by

, i.e. for .

Significance level: a.

Input:

Vectors where

 denote the outcome of independent repetitions of the random

experiment, 1,2, ,j n= � .

Null hypothesis:

 for all

Test value:

The value , , counts the number of

occurrences of in , and denotes

n

xwj
xT j |}:{|

:)(6

=
= { }kx 1,0Î

nwww ...,,, 21),,(ank

6() [2 ,2]k kT x a a- -Î - + { }0,1
k

x Î

1=k

nwww ...,,, 21

]5.0,5.0[)0(6 aaT +-Î

hjjj WWW ,...,, 21 h
thj

},...,1{ nj Î hjjj WWW ,...,, 21

()jsjjj pppp ,110 ...,,, -= { }tWp ijtj == Pr { }1...,,2,1,0},,...,1{ -ÎÎ stni

() () () h
hnnnhh swwwwwwwww }1,...,0{...,,,...,,...,,,,...,,, 212221212111 -Î

()hjjj www ...,,, 21 h thj

ji pp = },...,2,1{, hji Î

{ }twnjtf iji =Î= ,1][hi ,,2,1 �= { }1,,2,1,0 -Î st �

t inii www ,....,, 21

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 52

, , (50)

the relative frequency for within all samples. The test value is defined as

 (51)

Evaluation rule:

The test fails if))1)(1(,(),(2
7 --> shshT ac , where))1)(1(,(2 -- shac is the rejection

bound for a c2-test with (h-1)(s-1) degrees of freedom at significance level .

Entropy Estimation

203 Under specific assumptions defined below (i.e., at least for independent identically distributed
binary-valued random variables), CORON’S test [CoNa98] is more precise than Maurer's
"Universal Statistical" Test [Mau].

204 The Approximate Entropy Test [STS] [Ruk2000b] provides another entropy test for
independent and identically-distributed variables. The Approximate Entropy Test compares the
frequency of overlapping blocks of lengths m and m+1 against the expected result for a random
sequence.

205 Test T8 (entropy estimation) [CoNa98]:

Assumption:
Let the random variables model a stationary binary-valued ergodic random source
with a finite memory .

Input:
(a) word length
(b) and test parameter

(c) Bit sequence ,

Test value:

For we consider non-overlapping words of

length . Further, denotes the distance from to the nearest predecessor that assumes the

same value,

 (52)

The test value is defined as

nh
tftftf

p h
t ×

+++
=

][][][21 � { }1,,2,1,0 -Î st �

t),(7 shT

� �
= -=

-=
hi st

tti npnptfshT
,,1 1,,0

2
7 /)][(:),(

� �

a

,..., 21 BB
M L£

L
Q K

nbbb ...,,, 21 LKQn)(+=

KQi += ...,,2,1),,,(2)1(1)1(iLLiLii bbbw �+-+-=

L iA iw

{ }
if no exist with

min 1, in all other cases
n n i

n
n n i

n i n w w
A

i i w w
-

-

< =��
= 	 ³ =��

Cf

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 53

 with (53)

Entropy estimation:

Under the assumptions from above (stationary binary-valued random source with finite
memory), the expected value of test variable is closely related to the entropy increase

per L-bit block. If the random variables are independent, then

.

Evaluation rule:

Note: If the random variables are independent and unbiased, a normal distribution with

mean EF � � G and variance provides a good distribution of test variable . More

precisely, (54)

Table 10: Parameters for entropy test

L Variance d(L) e(L)

3 2.5769918 0.3313257 0.4381809

4 2.9191004 0.3516506 0.4050170

5 3.1291382 0.3660832 0.3856668

6 3.2547450 0.3758725 0.3743782

7 3.3282150 0.3822459 0.3678269

8 3.3704039 0.3862500 0.3640569

9 3.3942629 0.3886906 0.3619091

10 3.4075860 0.3901408 0.3606982

11 3.4149476 0.3909846 0.3600222

12 3.4189794 0.3914671 0.3596484

13 3.4211711 0.3917390 0.3594433

14 3.4223549 0.3918905 0.3593316

15 3.4229908 0.3919740 0.3592712

�
+

+=

=
KQ

Qn
nC Ag

K
f

1

)(
1 1

1

1 1
()

log(2)

i

k

g i
k

-

=

= �

)(CfE cf

,..., 21 BB
)()()(111 BLHWHfE c ==

,..., 21 BB
2
Cs Cf

() () 2
(,) () / , (,) ()

L

C C n C

e L
c L K Var g A K c L K d L

K
s

×
= = +

()()nAgVar

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 54

L Variance d(L) e(L)

16 3.4233308 0.3920198 0.3592384

infinite 3.4237147 0.3920729 0.3592016

For , the following sum approximates with an error < 10-8:

, (Euler constant) (55)

2.4.4. Test procedures

206 In this section we describe two complex test procedures that are part of the evaluation process.
The statistical tests T0 to T8 with the evaluation rules specified in the previous subsection are
the basic components of these test procedures.

207 The input data of test procedure A are sequences f of bit random numbers. In a first step, these
random numbers are interpreted as binary sequences.

2.4.4.1. Test procedure A

208 Input : Step 1: at least 3145728 � �@�< � CH�bits ; Step 2-7: at least 5140000 � @;;;; � @IJ bits.

209 Description of test procedure A:

Step 1: Let denote the smallest integer for which and the projection onto

the leftmost bits. Apply Test T0 to the sequence

16 16 16
1 1 1 1 1

1 1..48 1 2 1..48 1 2 1..482 (2 1) 1 2
: (,...,), : (,...,),..., : (,...,)c c c c c

w r r w r r w r rp p p+ - +
= = = , and

apply the evaluation rules specified in the previous subsection.

Step 2: Let denote the smallest integer with and the projection onto the

 component19. Generate a sequence of (f-bit) random numbers, interpret the
concatenation of these random numbers as a binary sequence, and store the projection

onto the leftmost 20000 positions, . Generate a sequence of 20000

f-bit random numbers, build ,…, ,

where consists of the ith bits of the 20000 random numbers. Continue this way

(generating sequences of and of 20000 random numbers, respectively) until sets

have been built.

19 In Step 5, the basic tests T1 – T5 are applied to random numbers (which are interpreted as bit strings) and to

the traces of the random numbers.

()()nAgVar

23³n)(ng

�
�
�

�
�
�++++=�

=

-
42

1

1 1
12

1
2
1

log
n

O
nn

nj
n

J

g 577216.0»g

1c 1 48c f× ³ 48..1p
48

2c 2 20000c f× ³ wp
thw 2c

)...,,(1
20000

1
2

1
1

1 bbbs =

)...,,(2
20000

2
2

2
1

2 bbbs =)...,,(1
20000

1
2

1
1

1 ++++ = ffff bbbs
1+is

2c 257s

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 55

Step 3 – Step 6: Apply the tests T1-T4 to bit sequence for .

Step 7: Apply Test T5 to bit sequence for . For each

sequence, do the following: Calculate the test values (see test T5) for

; determine ; select (randomly in case of

several candidates) for which this maximum is assumed; and apply T5 to the sub-
sequence with shift parameter .

210 Evaluation rules for Test Procedure A:

(a) If all basic tests have been passed, test procedure A is passed. For an
ideal RNG this happens with probability + ;6==HJ .

(b) If more than one basic test has failed, test procedure A is failed. For an ideal RNG this
happens with probability + ; .

(c) If exactly one basic test has failed, the statistician (evaluator, etc.) applies test procedure A
once more to new internal random numbers and applies evaluation rules a) and b). If within a
second run of test procedure A one basic test fails, test procedure A is failed. A second
repetition of test procedure A is not allowed.

Justification: Test procedure A is applied to output sequences of DRNGs, PTRNGs and NPTRNGs.
The goal of test procedure A is to check whether the random numbers (for PTRNGs: internal random
numbers) behave statistically inconspicuously. The projection onto the particular components of the
internal random numbers shall detect when particular positions of the internal random numbers behave
differently than others. For an ideal RNG the probability that test procedure A finally fails is almost 0.

2.4.4.2. Test procedure B

211 Input : Sequence of bits (Unlike for test procedure A the number of input bits is
not fixed but depends on the input sequence.)

212 Description of test procedure B:

Step 1. Apply the uniform distribution test T6 with parameter set

to .

Step 2. Consider the next bits of the input sequence (i.e., those not used for the first test); split
the non-overlapping pairs into two disjoint sub-

sequences and , where belongs to if and only if ;

continue this procedure until both and have at least elements;

consider the first many 2-tuples of each sub-sequence and determine the empirical 1-
step transition probabilities

.

This basic test is passed if and only if .

1 2 20000(, ,...,)i i i
is b b b= 257,..,1=i

1 2 20000(, ,...,)i i i
is b b b= 257,..,1=i

50001,...,ZZ

1000021 ,...,, bbb |}2500{|max 5000 -£ tt Z 0t

20000
'
1000010001

'
1 :,....,: bbbb == 0t

)52571(1285 ×+=

}1,0{,..., 21 Îbb

)025.0,100000,1(),,(=ank

10000021 ,...,, bbb

),...,(),,(100004100003100002100001 bbbb

0TF 1TF),(2212 ++ jj bb rTF rb j =+12

0TF 1TF 100000:1 =n

1n

122)(22121)(/|},),(:{|:)(_ nibTFbbnjiemp jrjjr =Î£= +++n

02.0:|1)0(_)1(_| 1)1()0(=<-+ aempemp uu

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 56

Step 3. Consider the next bits of the input sequence and split the sequence of non-overlapping
triplets into 4 disjoint sub-sequences , where belongs

to if and only if ; continue this procedure until each sub-

sequence has at least elements; consider the first many -tuples of

each sub-sequence and determine the empirical -step transition probabilities
;

for each , compare and with test T7 at the

significance level for equality.

Step 4. Consider the next bits of the input sequence and split the sequence of non-overlapping
quadruples into disjoint sub-sequences where

 belongs to if and only if ;

continue this procedure until each sub-sequence has at least elements;

consider the first n3 many -tuples of each sub-sequence and determine the empirical
-step transition probabilities

;

for each , compare and with test T7 at the

significance level for equality.

Step 5. Apply the entropy test (test T8) with the parameters and
to the next elements of the input sequence. Test T8 is passed if the test

variable .

213 Evaluation rule for Test Procedure B:

a) If all basic tests have been passed, test procedure B is passed. For

an ideal RNG this happens with probability + ;6===H

b) If more than one basic test has failed, test procedure B is failed. For an ideal RNG this
happens with probability + ; .

c) If exactly one basic test has failed, the statistician (evaluator, etc.) applies test procedure
B once more to new das-random numbers and applies evaluation rules a) and b). If
within the second run of test procedure B exactly one basic test fails, test procedure B is
failed. A second repetition of test procedure B is not allowed. For an ideal RNG the
probability that test procedure B finally fails is almost 0.

214 Goals and justification: Test procedure B usually is applied to binary-valued das-random
numbers of PTRNGs. The goal is to ensure that the entropy per das-bit is sufficiently large. A
small bias and slight one-step dependencies are permitted, but no significant more-step
dependencies. This means that if the first predecessor of a bit (or the first two predecessors) are
identical, all 2-last (or 3-last predecessors) shall induce the same 2-step (or 3-step) transition
probability. Moreover, although the stochastic model of the das-random numbers should
exclude possible long-term correlations, the evaluator shall search for possible long-term
correlations. If these requirements are fulfilled and the one-step transition probabilities are
negligible, the test value f from Test T8 provides an entropy estimator.

1100,...,TFTF),,(332313 +++ jjj bbb

rsTF),(),(2313 srbb jj =++

100000:2 =n 2n 3
2

233,3323132),(/|},),,(:{|:)(_ nibTFbbbnjiemp jsrjjjsr =Î£= ++++n

}1,0{Îs),0(_ sempu),1(_ sempu

0001.0:2 =a

8 111000,...,TFTF

),,,(44342414 ++++ jjjj bbbb rstTF),,(),,(342414 tsrbbb jjj =+++

100000:3 =n
4 3

344443424143),,(/|},),,,(:{|:)(_ nibTFbbbbnjiemp jrsjjjjtsr =Î£= +++++n
2}1,0{, Îts),,0(_ srempu),,1(_ srempu

0001.0:3 =a

2560,8 == QL
256000=K

976.7>f

)14211(9 ++++=

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 57

2.4.5. Additional Statistical Tests

215 This section discusses how statistical analysis of the RNG by standard test suites like those
described above may be extended by additional test suites or by more specific tests. These
statistical tests could be useful, e.g., for the analysis of random entropy sources if the hypothesis
of uniform distribution is rejected and digitized random signals need post-processing.

2.4.5.1. NIST RNG test suite

216 The U.S. National Institute of Standards and Technology (NIST) developed a test suite for
RNGs used for cryptographic purposes. The test suite is available from the NIST RNG project
website http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html. It contains 16
tests (cf. for details to [STS] or http://csrc.nist.gov/groups/ST/toolkit/rng/stat_tests.html):
Frequency (Monobit) Test, Frequency Test within a Block, Runs Test, Test for the Longest-
Run-of-Ones in a Block, Binary Matrix Rank Test, Discrete Fourier Transform (Spectral) Test,
Non-overlapping (Aperiodic) Template Matching Test, Overlapping (Periodic) Template
Matching Test, Maurer's "Universal Statistical" Test, Linear Complexity Test, Serial Test,
Approximate Entropy Test, Cumulative Sums (Cusums) Test, Random Excursions Test, and
Random Excursions Variant Test.

217 The tests calculate the p-value for the test values observed. If the computed p-value is < 0.01,
then it is recommended to conclude that the sequence is non-random. Otherwise, conclude that
the sequence is random. The tester needs 230 (=1073741824) bits to run the NIST test suite with
recommended parameters.

Table 11: Recommended parameter settings for the NIST test suite

Test Configuration item Setting

All tests
Bits per sequence 1000000

Number of sequences (sample size) 1073

Frequency Test within a Block Block length 20000

Non-overlapping template test Template length 10

Overlapping template Block length 10

Maurer’s “Universal Statistical” test
Test block length L 7

Initialization steps 1280

Approximate Entropy Test Block length 8

Linear Complexity Test Block length 1000

Serial Test Block length 16

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 58

2.4.5.2. Contingency table test

218 This section describes the method of contingency table to test the Null hypothesis of
independence of consecutive bits strings in the stationary RNG output by means of a
contingency table (also known as “test of homogeneity”). Note that test T7 is a special case.
Chapter 5.1 of this document provides a convenient R-script for analysis of binary data.

219 Let denote a sequence of stationary random variables that describe the output of the

RNG. By definition of independence, a string of consecutive bits is independent of the

preceding bits if and only if for any binary string and any positive

integer (stationarity property)

1 1

1 1 1 1

{(, ,) (, ,)}

{(, ,) (, ,)} {(, ,) (, ,)}
y x t t x y

y x t x t x y x y x t x

P B B b b

P B B b b P B B b b
+ + + +

+ + + + + + + +

= =

= = × =

� �

� � � �
 (56)

holds. Stationarity clearly implies

1 1 1 1{(, ,) (, ,)} {(, ,) (, ,)}k k k t t kP B B b b P B B b b+ += = =� � � � (57)

for any values and for any positive integers and . The basic idea is counting bit

strings in the RNG output and testing the frequency as an estimate of the probabilities against
the formula (55).

220 Suppose we generate a binary sequence and want to test whether bits depend on

bits generated before. We divide this sequence into non-overlapping strings

 of bits, . Let denote the observed

frequency of strings, where the left bits interpreted as dual number equal ,

, and the right bits interpreted as dual number equal ,

. Denote further and , where for short,

and . Then is the relative frequency of the strings that left parts hold

, and is the relative frequency of the strings that right parts hold

. Following (55), one expects in case of

independence of the left and right bits.

{ }i i N
B

Î

y x

{ }1(, ,) 0,1
y x

y xb b
+

+ Î�
t

1,...,kb b k t

{ } 0,i i M
b

Î
y x

n

1 1(, , , , ,)
k k k ky x l x l x l lb b b b+ + - + + -� � x y+ 0, 1k nÎ - ijn

y i

1 2(, ,)
k ky x l x li b b+ + - += � x j

1 2(, ,)
k kx l lj b b+ -= �

0

c

i ij
j

n n·
=

= �
0

r

j ij
i

n n·
=

= � 2 1yr = -

2 1xc = - /in n·

1 2(, ,)
k ky x l x li b b+ + - += � /jn n·

1 2(, ,)
k kx l lj b b+ -= � / (/)(/)ij i jn n n n n n· ·»

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 59

Figure 2: Contingency table for counts of consecutive bits strings

221 More precisely, if the bit strings are independent, the test value will be -distributed with
 degrees of freedom,

 (58)

with density

 (59)

222 Note that for small and , the -distribution is only a coarse approximation. The

expected values of for and shall be greater than 1. The statistical

literature like [Craw07], [SaHe06] may be consulted for further details about usage of
contingency tables.

shiftleft segment

y left bits x right bits

... ...

00 0 0 1

0

0

0

0

0 j c

i ij ic i

rjr rc r

j c

j c

n n n n

i n n n n

nn n nr
nn n n

·

·

·

·· ·

� �

� �

� � � � � � �

� �

� � � � � � �

� �

� �

sum of columns

sum of
rows

2 1yr = - 2 1xc = -

0n ·

shiftleft segment

y left bits x right bits

... ...

00 0 0 1

0

0

0

0

0 j c

i ij ic i

rjr rc r

j c

j c

n n n n

i n n n n

nn n nr
nn n n

·

·

·

·· ·

� �

� �

� � � � � � �

� �

� � � � � � �

� �

� �

sum of columns

sum of
rows

2 1yr = - 2 1xc = -

0n ·

2ĉ 2c
rc

2

2
2

0 0 0 0

ˆ 1

i j
ijr c r c

ij

i ji j i j i j

n n
n

nn
n

n n n n
n

c

· ·

· ·= = = = · ·

� �� �
-� �� � � �� �� �= = -� �� � � �� �

� �� �

�� ��

/ 2 1 / 2

/ 2 , 0
(,) 2 (/ 2)

0 0

d x

d

x e
x

r x d d

x

- -�
>�

= G	
� £�

n 2ˆ 0.1c < 2c

ijn 0,1, ,i r= � 0,1, ,j c= �

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 60

223 Chapter 5.2 discusses examples that apply contingency table tests.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 61

3. Security Functional Requirements - Family FCS_RNG

224 This chapter guides PP and ST writers how to describe the security functional requirements for
RNG. The extended family FCS_RNG describes SFR for RNGs for cryptographic and other
applications in PP and ST.

3.1. Definition of FCS_RNG

225 This section describes the functional requirements for the generation of random numbers, which
may be used as secrets for cryptographic purposes or authentication. The IT security
functional requirements for a TOE are defined in an additional family (FCS_RNG) of the
Class FCS (Cryptographic support).

FCS_RNG Generation of random numbers

Family Behaviour

This family defines quality requirements for the generation of random numbers that are intended
to be used for cryptographic purposes.

Component levelling:

FCS_RNG.1 Generation of random numbers, requires that the random number generator
implements defined security capabilities and that the random numbers meet a defined quality
metric.

Management: FCS_RNG.1

There are no management activities foreseen.

Audit: FCS_RNG.1

There are no actions defined to be auditable.

FCS_RNG.1 Random number generation

Hierarchical to: No other components.

Dependencies: No dependencies.

FCS_RNG.1.1 The TSF shall provide a [selection: physical, non-physical true, deterministic,
hybrid physical, hybrid deterministic] random number generator that
implements: [assignment: list of security capabilities].

FCS_RNG.1.2 The TSF shall provide random numbers that meet [assignment: a defined
quality metric].

FCS_RNG: Generation of random numbers 1FCS_RNG: Generation of random numbers 1

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 62

3.2. Security capabilities of RNG types

226 The PP writer may and the ST writer shall perform the operations by selection of the RNG type
and by assignment of security capabilities in the element FCS_RNG.1.1 and the assignment of
the quality of the generated random numbers in the element FCS_RNG.1.2. The security
capabilities may be assigned by identification of a predefined class that is described by a list of
security capabilities and a quality metric of the provided random numbers.

227 The PP / ST writer may define the RNG type by selecting the type of the RNG (“physical”,
“non-physical true”, “deterministic”, “hybrid physical” or “hybrid deterministic”) in the
element FCS_RNG.1.1. The RNG types are described in section 2.2.3.

228 The PP / ST writer may consider typical security capabilities to perform the operation of the
element FCS_RNG.1.1 as described below.

229 A physical true RNG uses dedicated hardware as an entropy source. It typically implements the
following security capabilities: CPG.x, x=1, 2, 3, which address internal tests.

230 CPG.1: Total failure test of the entropy source. When a total failure has been detected no further
random numbers will be output.

A total failure of the entropy source implies that the increase of the overall entropy of the output
sequence by future raw random numbers is 0. A total failure test of the random source detects a
breakdown of the noise source. The RNG immediately prevents the output of random numbers
if a total failure of the random source has been detected. Under suitable circumstances, e.g. if
random numbers have been buffered or if entropy is ‘stored’ in the internal state, a larger
latency of the tot test may be allowed.

231 CPG.2: Online test of the raw random number sequence. When a non-tolerable statistical defect
of the raw random number sequence has been detected no further random numbers will be
output.

The online test detects non-tolerable statistical defects of the raw random number sequence and
prevents the output of future random numbers. Non-tolerable statistical defects violate the
quality of random numbers defined in FCS_RNG.1.2. A statistical online test of the raw random
number sequence may be very effective to ensure the quality of output random numbers if the
post-processing algorithm works correctly The TSF test capabilities of the post-processing (e.g.,
known-answer test) or an online test of the internal random numbers should complete the online
test of the raw random number sequence.

232 CPG.3: Online test of the internal random numbers. When a non-tolerable statistical defect of
the internal random numbers has been detected no further random numbers will be output.

The online test detects non-tolerable statistical defects of the internal random numbers. The
RNG prevents output of random numbers if non-tolerable statistical defects have been detected.
A statistical online test of the internal random numbers may detect a failure of the noise source,
of the digitization mechanism, or of the post-processing. If the post-processing algorithm has
internal memory, it might produce pseudo-random numbers even after the noise source has
completely broken down. The test shall detect non-tolerable statistical defects of the internal
random numbers, or it shall be completed by an appropriate test of the raw random number
sequence.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 63

233 The hybrid physical RNG typically implements additional security capabilities CPG.x, x=4, 5,
extending those of the physical RNG:

234 CPG.4: On average (over the time) the raw random number sequence should provide at least as
much entropy to the post-processing algorithm as the output sequence can at most attain. (This
upper entropy bound clearly is attained for iid uniformly distributed sequences over the output
alphabet of the output function of the same length.)

Let us assume that the raw random number sequence generates entropy per time interval
where the RNG outputs internal random numbers over the alphabet . In average the output

sequence can at most contain fresh entropy but clearly not more than , which would

be obtained by ideal output sequences (i.e., iid uniformly distributed) on . If

on average (over the time), the post-processing algorithm principally might smooth the
distribution of the das random numbers towards the distribution of independent and uniformly
distributed random variables. CPG.4 formulates a necessary condition for the generation of true

random numbers with maximum entropy. If on average over the time, the RNG

cannot generate random numbers with maximum entropy. To generate output that is
(computationally) indistinguishable from uniformly distributed and independent random
numbers, the RNG then must extend the raw random number sequence by means of a DRNG
(hybrid DRNG, cf. CDG.5).

CPG.5: On average (over the time) the raw random number sequence should provide at least as
much entropy to the cryptographic post-processing algorithm as the output sequence can at most
attain. (This upper bound clearly is attained for iid uniformly distributed sequences over the
output alphabet of the same length.) The capability CPG.5 enhances the capability CPG.4 by
means of cryptographic post-processing. The capability CPG.4 provides a necessary condition
that the internal random numbers can have maximum entropy. Defects that affect statistical
properties of the raw random number sequences might reduce their entropy, and then the online
test should detect these effects (non-tolerable statistical defects) (cf. CPG.2). A cryptographic
post-processing algorithm hardens the internal random numbers against attacks in case of
entropy defects that occur in the time between occurrence and detection by the online tests. This
feature might be relevant due to limited effectiveness of the online tests.

235 A deterministic RNG produces random numbers by applying a deterministic algorithm to a
randomly-selected seed and, possibly, on additional external inputs. It typically implements
security capabilities CDG.x, x=1, 2, 3, 4, 5, as follows:

236 CDG.1: The seed of the DRNG has minimum entropy [assignment: value] to prevent successful
guessing attacks with the assumed attack potential.

The ST writer shall identify the minimum entropy of the seed as a security feature of the RNG.
The entropy shall be provided by the non-deterministic part of RNG, e.g., a physical RNG, or
by an external source, e.g., during installation (instantiation) of the TOE. The entropy may be
defined in terms of Min-entropy or Shannon entropy. This choice should be appropriate for the
random source for seeding the RNG.

237 CDG.2: The DRNG provides forward secrecy.

e
l R

e Rl 2log×

R Rl 2log×³e

Rl 2log×<e

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 64

Forward secrecy ensures that subsequent (future) values cannot be determined from current or
previous output values [ISO18031]. This unpredictability property is a natural security feature
of random numbers.

238 CDG.3: The DRNG provides backward secrecy.

Backward secrecy ensures that previous output cannot be determined from current or future
output values [ISO18031].

239 CDG.4: The DRNG provides backward secrecy even if the current internal state is known.

Enhanced backward secrecy ensures that previous output cannot be determined from the known
(compromised) current internal state, current or future output values.

240 CDG.5: The DRNG provides forward secrecy even if the internal state is known.

Enhanced forward secrecy ensures that subsequent (future) values cannot be determined from
known (compromised) current internal state, current or previous output values. Enhanced
forward secrecy may be ensured by reseeding or refreshing of the internal state initiated by a
specific function of the RNG.

241 The deterministic hybrid RNG typically implements additional security capabilities CDG. x,
x = 6, 7, extending those of a pure deterministic RNG:

242 CDG.6: The DRNG refreshes the internal state with an internal random source [selection: on
demand, continuously, [assignment: other method]].

The RNG refreshes the internal state of its deterministic part by non-deterministic input from an
internal random source. This capability does not quantify the amount of fresh entropy of the
input data. (This requirement is weaker than a reseed; cf. CDG.7).

243 CDG.7: The DRNG provides reseeding of the internal state by an internal random source
[selection: on demand, automatically, [assignment: other method]].

The RNG initializes the internal state of its deterministic part by non-deterministic input from
an internal random source. The new initial state shall be independent of the current value of the
internal state. Hence, the RNG estimates the entropy of the non-deterministic input to ensure a
lower entropy bound for the entropy of the new internal state.

244 A non-physical RNG uses non-physical external random sources within the operational
environment to generate random number output. Depending on the relation between the
entropy of the input data and the output data, one may distinguish between non-physical RNG
and hybrid non-physical RNG.

A non-physical true RNG gets fresh entropy from non-physical external random sources. The
estimated entropy of these data, resp. the estimated entropy of an entropy pool, is at least as
large as the amount of entropy that would be attained by output sequences that stemmed from
an ideal RNG. This condition is similar as for hybrid physical true RNGs, which use internal
noise sources, cf. para. 228 on page 67.

245 A non-physical non-deterministic RNG typically implements the security capability CNG.1 as
follows:

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 65

246 CNG.1: Examination of the external input [assignment: types of input data] to ensure sufficient
entropy to generate random numbers.

The NPTRNG tests the external input data to ensure that they provide sufficient entropy for the
internal state and thus finally for the output data. The entropy estimate for the input data is
(usually) based on heuristic assumptions on the nature of the input data. The IT environment of
the TOE shall ensure that these assumptions (as described in the security objectives for the IT
environment in the PP / ST) are indeed valid. For example, the NTPRNG design may exploit
the user’s keystrokes as an entropy source, and it computes some entropy estimate on the basis
of the pressed keys and the time instants when they are struck. This entropy estimator might not
detect a simulation (the repetition) of such keystrokes by malicious software that shall allow to
reproduce known internal states.

247 A non-physical true RNG typically implements an additional security capability on guaranteed
entropy as follows:

CNG.2: Each random number has fresh entropy of [assignment: quantity of entropy].

This quality metric may assign a lower min-entropy bound per random number, which allows a
direct estimate of the minimum guess work needed for the generated random numbers as part of
the vulnerability analysis (cf. section 2.3.2 on pp. 32). This quality metric may assign Shannon
entropy per random number, which under suitable circumstances (stochastic model!) is easy to
estimate with test procedure suite B. This value may be used to estimate the guess work for the
generated random numbers in vulnerability analysis e.g. if the bits are independent (cf.
paragraph 114 on page 29 for definition of independence).

248 The overall entropy of output sequences from true RNGs increases with their length. In contrast,
the entropy of output sequences from DRNGs is clearly limited by the seed entropy.
Therefore, if the TOE shall generate cryptographic keys that shall resist high attack potential:

- the TSF may call the TRNG until sufficient entropy is collected

- the SFR shall require 100-bit entropy of DRNG in element FCS_RNG.1.2

249 The quality of the random numbers produced may be described as follows:

250 QRN.1: The RNG generates numbers that are not distinguishable from ideal random numbers
by means of [selection: test procedure A, [assignment: other test suite]].

The quality metric “are not distinguishable from ideal random numbers by means of test
procedure A“ is easy to test, but its application for the vulnerability analysis might not suffice.
This would mean, for instance, that if test procedure A has been selected on basis of the
statistical properties that are considered by this test suite the designer should be able to estimate
the guesswork for the output sequence.

251 QRN.2: Statistical test suites cannot practically distinguish the internal random numbers from
output sequences of an ideal RNG.

This quality metric is suitable for the vulnerability assessment, but difficult to test. The
demonstration of this quality metric will use other theoretical evidence as well. E.g. if the RNG
uses cryptographic post-processing the standard statistical test might not detect defects of the
raw random numbers or entropy defects of the output.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 66

3.3. Rationale for definition of the extended component

252 The CC part 2 defines the component FIA_SOS.2, which is similar to FCS_RNG.1, as follows:

FIA_SOS.2 TSF Generation of secrets

Hierarchical to: No other components.

Dependencies: No dependencies.

FIA_SOS.2.1 The TSF shall provide a mechanism to generate secrets that meet [assignment:
a defined quality metric].

FIA_SOS.2.2 The TSF shall be able to enforce the use of TSF generated secrets for
[assignment: list of TSF functions].

253 The CC part 2, annex G.3 [CCV31_2], states: “This family defines requirements for
mechanisms that enforce defined quality metrics on provided secrets, and generate secrets to
satisfy the defined metric“. Even the operation in the element FIA_SOS.2.2 allows listing the
TSF functions using the generated secrets. Because all applications discussed in annex G.3 are
related to authentication, the component FIA_SOS.2 is also intended for authentication purposes
while the term “secret” is not limited to authentication data (cf. CC part 2, paragraphs 39-42).

254 Paragraph 685 in the CC part 2 [CCV31_2] recommends use of the component FCS_CKM.1 to
address random number generation. However, this may hide the nature of the secrets used for
key generation and does not allow describing random number generation for other
cryptographic methods (e.g., challenges, padding), authentication (e.g., password seeds), or
other purposes (e.g., blinding as a countermeasure against side channel attacks).

255 The component FCS_RNG addresses general RNG, the use of which includes but is not limited
to cryptographic mechanisms. FCS_RNG allows to specify requirements for the generation of
random numbers including necessary information for the intended use. These details describe
the quality of the generated data where other security services rely on. Thus by using FCS_RNG
a ST or PP author is able to express a coherent set of SFRs that include or use the generation of
random numbers as a security service.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 67

4. Pre-defined RNG Classes

256 This chapter defines classes of PTRNG, NPTRNG and DRNG for typical use cases. These
classes are hierarchically organized. The definition of these classes is accompanied by
application notes explaining their security capabilities and quality metrics.

257 This chapter also identifies the minimum information expected from the technical point of view
to fulfil the assurance requirements addressed in the PP or ST. The following paragraphs
identify the lowest assurance elements describing the relevant evidence. If the ST requires a
component hierarchical to the mentioned assurance component, the equivalent element of the
hierarchically-higher component will require analogue information.

4.1. Overview of pre-defined RNG classes

258 This section defines pre-defined RNG classes based on the component FCS_RNG.1. It
describes the specific evidence necessary for the evaluation of an RNG class based on a chosen
EAL according to the CEM.

259 The security functional requirements of the RNG class are described by means of the
component FCS_RNG.1 where

- the RNG type is selected,

- the security capabilities are assigned,

- the quality metric is assigned.

260 The developer shall provide specific information describing how the RNG meets the assurance
requirements expressed in a PP or ST for the security functional requirements described in
FCS_RNG.1.

261 If the ST defines in FCS_RNG.1 that the TOE supports one of the pre-defined RNG classes, the
developer is expected to provide specific information and evidence for the assigned security
capabilities and quality of the random numbers according to the content and presentation of
elements for the assurance components selected in the ST. If the ST requires a component
hierarchical to the mentioned assurance component, the equivalent element of the
hierarchically-higher component will require analogue information.

262 The pre-defined RNG classes relate to those described in [AIS20] and [AIS31] as follows
(coarse comparisons):

RNG
class

Comparable to
[AIS20] or [AIS31]

class
Comment

PTG.1 AIS31, P1
Physical RNG with internal tests that detect a total
failure of the entropy source and non-tolerable statistical
defects of the internal random numbers

PTG.2 AIS31, P2 PTG.1, additionally a stochastic model of the entropy
source and statistical tests of the raw random numbers

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 68

RNG
class

Comparable to
[AIS20] or [AIS31]

class
Comment

(instead of the internal random numbers)

PTG.3 No counterpart PTG.2, additionally with cryptographic post-processing
(hybrid PTRNG)

DRG.1 AIS20, K2, partly K3 DRNG with forward secrecy according to [ISO18031]

DRG.2 AIS20, K3 DRG.1 with additional backward secrecy according to
[ISO18031]

DRG.3 AIS20, K4 DRG.2 with additional enhanced backward secrecy

DRG.4 No counterpart DRG.3 with additional enhanced forward secrecy
(hybrid DRNG)

NTG.1 No counterpart Non-physical true RNG with entropy estimation

263 The following figures illustrate different classes of RNGs. We point out that other realizations
of these classes are possible. The pictures show in pink the total failure tests, in red the online
tests and in dark green known-answer-tests.

Figure 3: Example of PTRNGs that belong to the pre-defined classes PTG.1 and PTG.2

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 69

Figure 4: Example of a PTG.3 and NTG.1 that belongs to the pre-defined class PTG.3 and
NTG.1

264 The DRNG classes are illustrated by the following figures (- state transition function, -

output function, - symbol for a one-way function for the state transition function j
and the extended output function *y):

j y
A BA B

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 70

Figure 5: Examples of DRNGs that belong to the pre-defined classes DRG.1 and DRG.2

Figure 6: Examples of DRNGs that belong to the pre-defined classes DRG.3 and DRG.4

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 71

4.2. General Remarks (Exemplary applications, side-channel attacks, fault attacks)

265 In the description of the particular pre-defined RNG classes below possible (exemplary)
cryptographic applications are mentioned that shall motivate the class definitions. We point out
that these examples are informative only. In such or in related real-world applications there
might be special (additional) requirements on the random numbers, which make it necessary or
at least advisable to select an RNG from a higher class. Similarly, possible progress in
cryptanalysis might implicate the selection of higher RNG classes in the future. The designer of
an application is responsible for the choice of an appropriate RNG.

266 Implementation attacks, in particular side-channel attacks and fault attacks, constitute serious
threats against cryptographic implementations. Principally, also RNGs might be concerned.

267 (DRNGs): Although irrelevant from a cryptanalytic (logical) point of view in the light of
implementation attacks (in particular, of side-channel attacks) we recommend to use different
instantiations of a DRNG for different applications, and maybe even for different tasks within
one application (e.g., random numbers remain secret, random numbers remain unknown apart
from legitimate users, random numbers might be disclosed later, random numbers are open).
Otherwise the attacker might try to perform a side-channel attack, which exploits the known
random numbers to recover the internal state, which determines at least all future random
numbers.

268 (DRNG): To prevent side-channel attacks it might be recommendable not to keep secret parts of
the internal state constant. This would be the case, for instance, for a DRNG that uses a block
cipher with constant secret key in OFB mode.

269 (PTG.3) + (DRG.4): Hybrid RNGs combine security properties of both PTRNGs and DRNGs.
One may hope that the combination of both an analogue part and algorithmic post-processing
might also help to harden RNG implementations against side-channel attacks and fault attacks.

270 From a logical point of view statistical tests on the output data of a cryptographic post-
processing algorithm are pointless. However, online tests might serve as additional security
measure that might detect fault attacks.

4.3. Class PTG.1

271 The class PTG.1 defines requirements for PTRNGs, which might be used to generate random
numbers for cryptographic applications, where the random numbers need not meet any
unpredictability properties, neither in the past nor in the future.

272 The required quality metric of PTG.1 does not prevent that the random numbers might be
guessed.

4.3.1. Security functional requirements for the RNG class PTG.1

273 The functional security requirements of the class PTG.1 are defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class PTG.1)

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 72

FCS_RNG.1.1 The TSF shall provide a physical20 random number generator that
implements:

(PTG.1.1) A total failure test detects a total failure of the entropy source immediately
when the RNG has started. When a total failure is detected, no random
numbers will be output.

(PTG.1.2) If a total failure of the entropy source occurs while the RNG is being
operated, the RNG [selection: prevents the output of any internal random
numbers that depend on raw random numbers generated after the total
failure occurred, generates the internal random numbers with a post-
processing algorithm of class DRG.1 until the output of further internal
random numbers is prevented].

(PTG.1.3) The online test detects non-tolerable statistical defects of the internal
random numbers. The online test is [selection: triggered externally, applied
after regular intervals, applied continuously, applied upon specified internal
events]. When a defect is detected, the output of further random numbers is
prevented.

(PTG.1.4) Within one year of typical use, the probability that an online alarm occurs is

in the order of or larger if the RNG works properly. 21

FCS_RNG.1.2 The TSF shall provide [selection: bits, octets of bits, numbers [assignment:
format of the numbers]] that meet:

(PTG.1.5) Test procedure A [assignment: additional standard test suites] does not
distinguish the internal random numbers from output sequences of an ideal
RNG. 22

4.3.2. Application notes

274 An RNG of class PTG.1 shall generate true random numbers based on an entropy source. A
total breakdown of the entropy source causes zero entropy for future raw random numbers.
Moreover, a failure of the digitization of the analogue signal of the post-processing algorithm
might cause defects of the internal random numbers. The total failure test and the online test
shall detect those types of errors, and the TOE shall prevent output of random numbers of poor
quality.

275 The total failure test may detect

(i) the breakdown of the entropy source by analyzing the raw random signal, or

(ii) the total failure of the entropy source including the digitization by analyzing the raw
random number sequence.

20 [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]
21 [assignment: list of security capabilities]
22 [assignment: a defined quality metric]

610-

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 73

The total failure test must consider the physical principle of the entropy source. In case (i), the
total failure test may measure the physical entropy effect. In case (ii), the breakdown analysis of
the entropy source usually identifies characteristic patterns in the raw random signal (e.g.,
constant sequences, meanders) that can be detected quickly by a suitable test.

276 If a total failure of the entropy source occurs the total failure test might need some time to detect
this failure, and the post-processing mechanism might delay the effect of the non-random raw
random numbers on the output random numbers. The FCS_RNG.1.1 clause (PTG.1) explains
the response of the RNG when a total failure of the entropy source has been detected:
preventing the output of random numbers. FCS_RNG.1.1 clause (PTG.1.2) addresses the time
between the occurrence and the detection of a total failure. The selection covers two types of
post-processing algorithms:

277 Case (i): The post-processing mechanism generates internal random numbers that depend only
on some fixed number of raw random signals (e.g., the internal random number might be
calculated from a raw random number sequence that is stored in a first-in, first-out memory).
After a total failure, the raw random signal loses any randomness, and the generated raw
random numbers affect the generated internal random numbers in a deterministic way. After
some time, the internal random numbers are generated only from non-random raw random
numbers. No later than this point the RNG shall prevent the output of internal random numbers
because they have completely been generated after a total failure of the entropy source.

278 Case (ii): The internal random numbers might principally depend on an unlimited number of
raw random numbers (memory!), although the internal state is finite (e.g., the internal random
numbers are calculated from raw random numbers that are stored in a feedback shift register).
Therefore, the internal random numbers still depend on “truly random” raw random numbers,
which have been generated before the entropy source has broken down.. The RNG generates
output with a post-processing mechanism of class DRG.1 until the RNG prevents the output of
internal random numbers, which ensures the quality of the internal random numbers during the
time between occurrence and detection of a total failure, as required by element FCS_RNG.1.1
clause (PTG.1.2).

279 The online test shall detect non-tolerable statistical defects of the internal random numbers. As
distinct from a total failure, these defects usually can be detected only by statistical tests. The
FCS_RNG.1.1 clause (PTG.1.3) addresses the conditions under which the online tests shall be
executed. The FCS_RNG.1.1 clause (PTG.1.4) ensures that the online test is sharp enough to
detect statistical defects. The course of one year of typical use of the RNG is defined by the use
of the TOE or by additional evidence provided by the developer. If the internal random numbers
pass the online test, the TOE design shall ensure that the output random numbers meet the
quality described in (PTG.1.5).

280 If the tot test and / or the online test are not part of the TOE but to be implemented later as an
external security measure the applicant must submit a specification of the test(s), a justification
for effectiveness and a reference implementation. The suitability of the tot test and the online
test shall be verified based on the reference implementation. In the positive case the RNG is said
to be PTG.1 compliant under the condition that the final implementation meets the specification
in the user manual (to be checked in a composite evaluation).

281 The developer may or may not assign additional standard test suites (i.e. the assignment may be
empty) in the element FCS_RNG.1.2 clause (PTG.1.5). The element FCS_RNG.1.2 clause
(PTG.1.5) demands that the application of test procedure A and - if assigned – of additional

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 74

standard test suites does not reject the null hypothesis “the internal random numbers were
generated by an ideal random generator”. The same requirement is demanded for classes PTG.2
and DRG.1. The efforts of testing depend on the claimed resistance (in the ST) against attacks
(cf. selected component of the family AVA_VAN). The evaluator may apply additional
statistical tests as penetration tests. Note that this requirement does not necessarily imply that
the rejection probability for the internal random numbers equals the rejection probability of
sequences from ideal RNGs. Moreover, even this enhanced property is weaker than
Requirements PTG.3.8, DRG.2.5, DRG.3.5 and DRG.4.7.

4.4. Class PTG.2

282 The class PTG.2 defines requirements for RNGs intended to generate, for example:

- cryptographic keys (e.g., for block ciphers or for RSA),

- random padding bits,

- seeds for DRNGs of the classes DRG.1, DRG.2, DRG.3 or DRG.4, or

- cryptographic applications with similar requirements (in particular, secrecy of the
random numbers)

(cf. also par. 265). Roughly speaking, PTG.2 conformant RNGs generate high-entropy random
numbers. These random numbers may not be practically indistinguishable from independent
uniformly distributed random numbers (output from an ideal RNG). The entropy shall in
particular prevent successful guessing attacks. In particular, class PTG.2 includes the
applications for class PTG.1.

283 The PTG.2 class specification allows that the internal random numbers may have a small
entropy defect, e.g. due to a small bias. When used for the generation of ephemeral keys for
DSA signatures or ECDSA signatures, for example, a potential attacker might try to combine
information from many signatures, resp. on several ephemeral keys. Although no concrete
attack is known to date to stay on the safe side it might be favourable to use a class PTG.3 RNG
as a measure of precaution. Similar considerations hold for any other applications, too, where an
attacker might be able to collect information on many internal random numbers. The practical
relevance of this potential vulnerability clearly depends on the concrete application.

284 The PTG.2 class specification does not require a post-processing algorithm if the raw random
numbers are already good enough. However, even then it might be reasonable to apply a post-
processing algorithm with memory. The post-processing algorithm might smooth a bias or
short-term dependencies. Even if it is not data-compressing the entropy of its internal state
might compensate entropy defects of the raw random numbers provided that in the course of the
time more random raw bits are fed into the post-processing algorithm than outputted by the
PTRNG.

285 For a PTG.2 RNG the post-processing algorithm (if it exists) may not be cryptographic. If the
post-processing algorithm belongs to class DRG.2, resp. even to DRG.3, (viewed as a free-
running DRNG) this extends the reaction time upon a total failure of the entropy source
(PTG.2.2), resp. the PTRNG may even belong to class PTG.3 (cf. PTG.3.6).

4.4.1. Security functional requirements for the RNG class PTG.2

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 75

286 Functional security requirements of the class PTG.2 are defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class PTG.2)

FCS_RNG.1.1 The TSF shall provide a physical 23 random number generator that
implements:

(PTG.2.1) A total failure test detects a total failure of entropy source immediately when
the RNG has started. When a total failure is detected, no random numbers
will be output.

(PTG.2.2) If a total failure of the entropy source occurs while the RNG is being
operated, the RNG [selection: prevents the output of any internal random
number that depends on some raw random numbers that have been
generated after the total failure of the entropy source, generates the internal
random numbers with a post-processing algorithm of class DRG.2 as long
as its internal state entropy guarantees the claimed output entropy].

(PTG.2.3) The online test shall detect non-tolerable statistical defects of the raw
random number sequence (i) immediately when the RNG has started, and
(ii) while the RNG is being operated. The TSF must not output any random
numbers before the power-up online test has finished successfully or when a
defect has been detected.

(PTG.2.4) The online test procedure shall be effective to detect non-tolerable
weaknesses of the random numbers soon.

(PTG.2.5) The online test procedure checks the quality of the raw random number
sequence. It is triggered [selection: externally, at regular intervals,
continuously, applied upon specified internal events]. The online test is
suitable for detecting non-tolerable statistical defects of the statistical
properties of the raw random numbers within an acceptable period of time.24

FCS_RNG.1.2 The TSF shall provide [selection: bits, octets of bits, numbers [assignment:
format of the numbers]] that meet:

(PTG.2.6) Test procedure A [assignment: additional standard test suites] does not
distinguish the internal random numbers from output sequences of an ideal
RNG.

(PTG.2.7) The average Shannon entropy per internal random bit exceeds 0.997.

4.4.2. Application notes

287 The class PTG.2 includes the requirements of class PTG.1 for the security capabilities
(PTG.1.1) (PTG.1.3) and (PTG.1.4) as defined in the element FCS_RNG.1.1. It reformulates
(PTG.1.2) in the form of (PTG.2.2). The security capability of an online test of the internal

23 [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]
24 [assignment: list of security capabilities]

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 76

random numbers is replaced by online tests of the raw random number sequence, i.e., tests are
oriented towards the entropy source. It adds requirements for the minimum entropy of random
numbers.

288 The element FCS_RNG.1.1 clause (PTG.2.2) addresses security capabilities that shall ensure
the quality of outputted internal random numbers between the occurrence and the detection of a
total failure of the entropy source. It allows the output of some internal random numbers that
depend on some raw random numbers with zero entropy if the post-processing algorithm can be
viewed as a DRNG of class DRG.2. If the PTRNG had worked properly before the total
breakdown of the entropy source, the entropy of the internal state should be maximal, which
limits the maximal number of internal random numbers that may be outputted (PTG.2.7). Let t
denote the ratio of the bit length of the internal state of the DRNG and the bit size of the internal
random numbers. Under the assumption that the DRNG has appropriate mixing properties the
RNG may output at most t internal random numbers that depend on some raw random numbers
that have been generated after the total failure of the entropy source in order to ensure sufficient
entropy of the internal random numbers. (Recall that PTG.1.2 only demands a post-processing
algorithm of the weaker class DRG.1, and there is no upper bound for the outputted internal
random numbers.)

289 The entropy source might be affected, for instance, by aging, tolerances of components,
environmental stress, or events like the failure of particular components (e.g., if the PTRNG
comprises more than one entropy source). These factors might decrease the entropy of the raw
random signal, but might not result in total failure of the (overall) entropy source. Such defects
shall be detected by the online test of the raw random number sequence required in the element
FCS_RNG.1.1 clause (PTG.2.3).

290 The element FCS_RNG.1.1 requires in clause (PTG.2.3) an online test that detects non-tolerable
statistical defects of the raw random numbers. The online test of the raw random number
sequence in (PTG.2.3) analyses the digitized random signal before post-processing while online
tests of the internal random numbers in (PTG.1.3) consider the post-processed random numbers.
Note that the online tests for the raw random numbers shall be selected such that the tested
statistical properties correspond to possible entropy defects. This is usually not the case for
blackbox tests. The rationale for the online tests of the raw random number sequence must be
based on stochastic models of the entropy source. The online test procedure shall consider the
statistical properties of the raw random numbers. Thus the online tests are usually applied to the
raw random numbers. Note, however, that this requirement does not categorically exclude that
(in exceptional cases) the online test might operate on analogue values (e.g., to estimate the
jitter) or on the internal random numbers. Example: Assume that the RNG generates iid (maybe
strongly) biased das random bits (¬ stochastic model), and that the post-processing algorithm
xors non-overlapping pairs of das random bits. Then the internal random numbers are also iid,
and the online test could be applied to the internal random numbers as well, indirectly verifying
the quality of raw random numbers. In this scenario information on statistical properties of the
raw random numbers (here: bias) can easily be translated into information on the raw random
numbers, and this essentially corresponds with entropy. However, even then it might be
reasonable to test the raw random numbers since a large deviation of the distribution of the raw
random numbers implies only a significantly smaller deviation in the internal random numbers,
which might be more difficult to detect.

291 If the tot test and / or the online test are not part of the TOE but to be implemented later as an
external security measure the applicant must submit a specification of the test(s), a justification
for effectiveness and a reference implementation. The suitability of the tot test and the online

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 77

test shall be verified based on the reference implementation. In the positive case the RNG is said
to be PTG.2 compliant under the condition that the final implementation meets the specification
in the user manual (to be checked in a composite evaluation).

292 If the post-processing algorithm does not reduce the average entropy per bit, the average
entropy per internal random bit equals at least the average entropy per raw random bit.

293 The term “power-up test” in clause (PTG.2.3) addresses the online test of the raw random
number sequence when the RNG is started after the TOE has been powered up (after being
powered off), reset, rebooted etc., or after the operation of the RNG has been stopped (e.g., to
reduce the power consumption of the TOE). If the PTRNG does not apply a post-processing
algorithm (or formally: if it applies the identity mapping), the internal random numbers coincide
with the raw random signals. In this case, the clauses (PTG.2.3) and (PTG.2.5) will cover
(PTG.1.3) and (PTG.1.4). If the RNG applies a post-processing algorithm, the raw random
signals and the internal random numbers usually have different statistical properties. If the raw
random number sequence passes the online test and if the post-processing algorithm works
correctly, the internal random numbers will have appropriate properties (in particular, sufficient
entropy). A temporary or permanent failure in the implementation of the post-processing
algorithm might result in non-tolerable entropy defects of the internal random numbers (at least
the post-processing algorithm does not work as expected). For many post-processing
algorithms, it seems hardly possible to implement effective statistical tests on the internal
random numbers, e.g., because post-processing induces complicated dependencies between the
internal random numbers. The correctness of the (deterministic) post-processing may be
checked while the PTRNG is in operation, e.g., by a known answer test (cf. FPT_TST.1 TSF
test).

294 The element FCS_RNG.1.2 clause (PTG.2.7) demands that the average Shannon entropy is at
least 0.997 per internal random bit. If the raw random numbers are binary-valued the entropy
may be checked by the statistical test procedure B as described above. (Note that if the raw
random numbers are Markovian, i.e. if there are no higher dependencies than 1-step
dependencies, Step 1 and Step 2 of test procedure B indicate an entropy defect per das random
bit of less than 0.002. If the das bits are iid the entropy defect per bit does not exceed 0.0002.)
Note that the Min-entropy is the most generally-applicable entropy measure that can be used to
estimate the guesswork in vulnerability analysis, but the min-entropy is difficult to quantify.

295 The developer may or may not assign additional test suites (i.e. the assignment may be empty)
in the element FCS_RNG.1.2 clause (PTG.2.6). The element FCS_RNG.1.2 clause (PTG.2.6)
demands that the application of test procedure A and - if assigned – of additional standard test
suites does not reject the null hypothesis “the internal random numbers were generated by an
ideal random number generator”. The same requirement is demanded for classes PTG.1 and
DRG.1. The efforts of testing depend on the claimed resistance (in the ST) against attacks (cf.
selected component of the family AVA_VAN). The evaluator may apply additional statistical
tests as penetration tests. Note that this requirement does not necessarily imply that the rejection
probability for the internal random numbers equals the rejection probability for sequences from
ideal RNGs. Moreover, even this enhanced property is weaker than Requirements PTG.3.8,
DRG.2.5, DRG.3.5 and DRG.4.7.

4.4.3. Further aspects

296 The developer shall provide evidence that the entropy of the internal random numbers is
sufficiently large. The evidence comprises a stochastic model (cf. subsection 2.4.1 on pp. 39)

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 78

tailored to the TOE design and substantiated by statistical tests. There is only one level of detail
in the description of the stochastic model, irrespective of the chosen EAL. Below this guidance
describes explicitly two evaluation methods Method A and Method B, which may be applied to
PTRNGs that generate 1-bit raw random numbers.

Method A
A.1 On the basis of the stochastic model, the developer shows that the raw random numbers are
stationary distributed, and that there are no significant (long-step) dependencies, which are not
covered by the statistical tests from test procedure B.
A.2 The raw random numbers pass the statistical test procedure B under all relevant
environmental conditions.
A.3 The developer verifies that the post-processing algorithm does not reduce the entropy per
bit. Alternatively, the developer provides evidence that the average entropy per internal random
number remains sufficiently large.
A.4 The internal random numbers pass the statistical test procedure A (and other statistical
standard test suites if applied) under all relevant environmental conditions.

Method B
B.1 On the basis of the stochastic model, the developer shows that the raw random numbers are
stationary distributed, and that there are no significant (long-step) dependencies that are not
covered by the statistical tests from test procedure B.
B.2 The developer verifies on the basis of the stochastic model that due to the post-processing
algorithm the entropy per internal random number is sufficiently large. Under suitable
conditions test procedure B might support this goal.
B.3 The internal random numbers pass the statistical test procedures A (and other statistical
standard test suites if applied) and test procedures B under all relevant environmental
conditions.

297 In Evaluation Method A, the raw random numbers pass the statistical test suite B under all
relevant environmental conditions. In particular, the average entropy per raw random number is
sufficiently large. Hence, the post-processing algorithm need not increase the entropy per bit.
The identity mapping is allowed, which means ‘no post-processing’.

298 If Evaluation Method B is applied, three cases are possible: (i) test suite B does implicitly verify
the entropy of the raw random numbers, and test suite B is passed; (ii) test suite B does
implicitly verify the entropy of the raw random numbers, and test suite B fails; or (iii) test suite
B cannot be applied or is not applicable to the raw random numbers, e.g. because there is no
access to the raw random numbers or the raw random numbers are not binary-valued.

299 Evaluation Method A and Evaluation Method B consider the case that the PTRNG generates a
single raw random bit per time unit. If the entropy source generates (k � 1) – bit raw random
numbers, additional problems might occur (e.g., dependencies between the bits of each k-bit
raw random number, different statistical behaviour of the particular bit traces) and thus must be
considered. The evaluation may follow the line of Evaluation Method A or of Evaluation
Method B described above. Depending on the concrete PTRNG design, this might require the
specification of a new test suite B’, which shall be at least as effective as test suite B under the
conditions of Evaluation Method A, or of Evaluation Method B, respectively. The effectiveness
of the chosen test suite B’ shall be verified.

300 In the definition of the different evaluation methods, environmental conditions are viewed as
relevant if they either (i) belong to the specified range of admissible working conditions, or (ii)

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 79

lie outside that range but cannot reliably be detected by anti-tamper measures (e.g., by sensors)
although they may affect the behaviour of the entropy source.

301 Every statistical test considers only particular statistical properties. In particular, there are no
generally-applicable blackbox tests that provide reliable entropy estimates for random numbers.
To be recognized as effective for a positive verification of security properties, a statistical test
must be based on a stochastic model.

4.5. Class PTG.3

302 The class PTG.3 defines requirements for RNGs that shall be appropriate for any cryptographic
applications, in particular including those for PTG.2. Unlike PTG.2 - PTRNGs the security of
PTG.3 - PTRNGs does not only rely on one security anchor but on two security anchors:
information-theoretical security ensured on the physical part of the RNG and computational
security ensured on the properties of the cryptographic post-processing algorithm. In particular,
the internal random numbers will not show any bias nor short term dependencies.

303 PTG.3 is the strongest class that is defined in this document. PTG.3 conformant PTRNGs may
be used for any cryptographic application. Typical PTG.3 applications are the generation of
ephemeral keys for DSA signatures and for ECDSA signatures, for instance.

304 Class PTG.3 demands a post-processing algorithm with memory that (interpreted as a DRNG) is
DRG.3-conformant (cf. chapter 4.8) even if its input data are known at some point in time. In
particular, the state transition function j and the extended output function *y of this DRNG
are cryptographic one-way functions.

4.5.1. Security functional requirements for the RNG class PTG.3

305 Functional security requirements of the class PTG.3 are defined by component FCS_RNG.1
with the specific operations given below.

FCS_RNG.1 Random number generation (Class PTG.3)

FCS_RNG.1.1 The TSF shall provide a hybrid physical 25 random number generator that
implements:

(PTG.3.1) A total failure test detects a total failure of entropy source immediately when
the RNG has started. When a total failure has been detected no random
numbers will be output.

(PTG.3.2) If a total failure of the entropy source occurs while the RNG is being
operated, the RNG [selection: prevents the output of any internal random
number that depends on some raw random numbers that have been
generated after the total failure of the entropy source, generates the internal
random numbers with a post-processing algorithm of class DRG.3 as long
as its internal state entropy guarantees the claimed output entropy].

(PTG.3.3) The online test shall detect non-tolerable statistical defects of the raw
random number sequence (i) immediately when the RNG is started, and (ii)

25 [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 80

while the RNG is being operated. The TSF must not output any random
numbers before the power-up online test and the seeding of the DRG.3 post-
processing algorithm have been finished successfully or when a defect has
been detected.

(PTG.3.4) The online test procedure shall be effective to detect non-tolerable
weaknesses of the random numbers soon.

(PTG.3.5) The online test procedure checks the raw random number sequence. It is
triggered [selection: externally, at regular intervals, continuously, upon
specified internal events]. The online test is suitable for detecting non-
tolerable statistical defects of the statistical properties of the raw random
numbers within an acceptable period of time.

(PTG.3.6) The algorithmic post-processing algorithm belongs to Class DRG.3 with
cryptographic state transition function and cryptographic output function,
and the output data rate of the post-processing algorithm shall not exceed
its input data rate.

FCS_RNG.1.2 The TSF shall provide [selection: bits, octets of bits, numbers [assignment:
format of the numbers]] that meet:

(PTG.3.7) Statistical test suites cannot practically distinguish the internal random
numbers from output sequences of an ideal RNG. The internal random
numbers must pass test procedure A [assignment: additional test suites].

(PTG.3.8) The internal random numbers shall [selection: use PTRNG of class PTG.2
as random source for the post-processing, have [assignment: work factor],
require [assignment: guess work]].

4.5.2. Application notes

306 The security capabilities in element FCS_RNG.1.1 clause (PTG.3.2) ensure the quality of the
output in the time period between the occurrence and the detection of a total failure of the
entropy source. The internal state of the post-processing algorithm shall ensure that the
outputted internal random numbers contain sufficient entropy in this time period. Clause
(PTG.3.6) ensures enhanced backward secrecy (cf. (DRG.3.3)) even if the entropy source has
broken down and if the internal state is compromised.

307 Clauses (PTG.3.5) and (PTG.3.8) shall ensure that the quality of the internal random numbers is
sufficiently large unless a noise alarm occurs.

308 The security capability (PTG.3.8) separates PTG.3-conformant PTRNGs from DRG.4-
conformant DRNGs. Essentially, clauses (PTG.3.6) and (PTG.3.8) demand that the average
entropy (over the time) of the input data of the algorithmic post-processing algorithm should not
be smaller than the average number of internal random bits in the same time period; a small
entropy defect might be tolerable. Since the bit length of the internal random numbers is usually
much larger than the bit size of the input data of the post-processing algorithm, this requirement
might not be fulfilled in short time intervals. However, the entropy of the internal state shall
compensate such time-local effects for any time interval, i.e., the entropy of the input data shall
not be smaller than the number of internal random bits minus the bit length of the internal state

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 81

of the algorithmic post-processing algorithm. The security capabilities (PTG.3.3) and (PTG.3.5)
ensure that the internal random numbers contain enough entropy while the PTRNG is in
operation.

309 A PTG.3-conformant PTRNG may be viewed as a composition of an “inner” PTRNG with a
DRNG post-processing where the output data of the PTRNG serve as input data for the DRNG,
which updates / refreshes its internal state. The “inner” PTRNG itself may comprise an ‘inner’
algorithmic post-processing algorithm. In particular, the output data of the inner PTRNG need
not necessarily be raw random numbers but may already be algorithmically post-processed.

310 If we view a PTG.3-conformant PTRNG as a composition of an inner ‘PTRNG’ part and a
DRNG part, we may distinguish two cases: (i) the inner PTRNG is PTG.2-conformant, or (ii)
the inner PTRNG is not PTG.2-conformant. For case (i), the RNG may principally be operated
in three modes: (a) as a PTG.3-PTRNG, (b) as a PTG.2-PTRNG if the output data of the
physical part are used directly, or (c) as a DRG.4-DRNG if the input sequence of the
algorithmic post-processing algorithm is ‘extended’. For case (ii), only options (a) and (c)
remain. Security requirements and functional requirements of particular cryptographic
applications might make such a diversification meaningful. Conformity to the particular classes
must be verified in separate evaluation processes. Evaluation results clearly may be used for all
these evaluations.

311 The post-processing algorithm belongs to class DRG.3 even if the PTRNG random source has
totally broken down and an attacker knows or is able to guess its output (i.e., the input of the
post-processing algorithm). Of course, this demands that the internal state of the post-processing
algorithm was unpredictable at the time of the breakdown, which is the case if the PTRNG had
worked properly for at least a short time. In the case of a total breakdown, of course, the
PTRNG must not output more internal random bits than the size of the internal state in bits.
Otherwise, the RNG belongs to class DRG.3 after this instant.

312 Unlike for PTG.3-conformant PTRNGs, DRG.4-conformant DRNGs may ‘extend’ the input
data, i.e., DRG.4 conformant DRNGs may compute large output sequences from short input
sequences. In particular, there is no minimum entropy bound per internal random bit (cf. chapter
4.6 for details).

313 The element FCS_RNG.1.2 clause (PTG.3.7) requires that statistical tests cannot practically
distinguish the internal random numbers from output sequences of an ideal RNG. The feature
that statistical test suites cannot practically distinguish the RNG output from uniformly
distributed random bit sequences depends on the claimed in the ST resistance against attacks
(cf. selected component of the family AVA_VAN). The effort of testing is defined by the used
test suites and the amount of test data. The developer will provide functional tests with test suite
A and maybe other appropriate tests suites. The evaluator may additionally apply further
statistical tests as penetration tests. These tests may be tailored to the RNG design. Requirement
(PTG.3.7) is stronger than (PTG.1.5) and (PTG.2.6)

314 The clause (PTG.3.8) provides three methods describing the quality of the output. The work
factor and the guess work may be used directly in the vulnerability analysis of the application
using the random number output. The selection “use PTRNG of class PTG.2 as random source“
together with (PTG.3.6) allows an indirect verification of the output quality.

315 If the DRNG post-processing algorithm maps the input data from the inner PTRNG bijectively
onto the output space, its entropy remains constant. If the inner PTRNG is PTG.2-conformant,

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 82

the (Shannon) entropy per random bit is sufficiently large. Since PTG.2-conformant PTRNGs
generate stationary random raw sequences, the Shannon entropy provides an appropriate
estimate for the work factor unless the sequences are too short, which is not the case for DRG.3-
conformant DRNGs. An example of a bijective DRG.3-conformant post-processing algorithm is
a block cipher that is operated in OFB mode where the internal random number is given by the
whole ciphertext block. Before a new internal random number is output, a fresh random bit
string from the inner PTRNG is XORed to that part of the inner state of the DRNG that stores
the previous internal random number (= last ciphertext). Then the updated part of the internal
state is encrypted and output (internal random number), and then a one-way function is applied
to the updated internal state.

316 DRG.3-conformity requires a one-way state transition function. One-way functions usually
reduce the entropy per bit unless the length of the input data significantly exceeds the length of
the output. One usually models one-way functions as realisations of random mappings. Section
5.4.4 investigates the effect of random mappings on uniformly distributed input data. Output
sequences of PTG.2-conformant real-world PTRNGs are not ideal, but should be close enough
to the uniform distribution so that it appears reasonable to assume that the figures from section
5.4.4 are also valid for input data from PTG.2-conformant PTRNGs (see section 5.4.4 for
further details). An example of this type of post-processing algorithm is the following:
Whenever an internal random number shall be output, a fresh n-bit string from the inner
PTRNG is XORed to the internal state. Then an m-bit hash value)(nm < of the internal state
is output, and the internal state is updated by applying (another) one-way function.

317 If the tot test and / or the online test are not part of the TOE but to be implemented later as an
external security measure the applicant must submit a specification of the test(s), a justification
for effectiveness and a reference implementation. The suitability of the tot test and the online
test shall be verified based on the reference implementation. In the positive case the RNG is said
to be PTG.3 compliant under the condition that the final implementation meets the specification
in the user manual (to be checked in a composite evaluation).

318 Under certain conditions class PTG.3 allows a composite evaluation. For example, a software
developer might use the output of a PTG.2 RNG, which is implemented in hardware on the
device, as input for a DRG.3 RNG with memory. In the composite evaluation it has to be
checked whether all requirements that concern the post-processing algorithm itself and its
interaction with the PTG.2 output are fulfilled. If this is the case the composite RNG (PTG.2 +
DRG.3 conformant post-processing) is PTG.3 conformant.

4.5.3. Further aspects

319 The developer shall provide the evidence required in ATE_FUN.{1,2}.PTG.3.2 clause
(PTG.3.8), i.e., the developer shall provide evidence that the entropy of the internal random
numbers is sufficiently large. The evidence comprises a stochastic model (cf. subsection 2.4.1
on pp. 39) tailored to the TOE design and substantiated by statistical tests. There is only one
level of detail in the description of the stochastic model, irrespective of the chosen EAL. The
stochastic model shall consider the situation before the application of the DRG.3 post-
processing algorithm, i.e., the input data of the post-processing algorithm (as for PTG.2-
conformant PTRNGs) and the effect of this post-processing.

320 For the non-post-processed data, this guidance describes Method A* and Method B*, which
may be applied if 1-bit raw random numbers are generated. These evaluation methods are
related to Method A and Method B for PTG.2-PRNGs.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 83

321 Method A*
A.1 On the basis of the stochastic model the developer shows that the raw random numbers are
stationary distributed, and that there are no significant (long-step) dependencies, which are not
covered by the statistical tests from test suite B.
A.2 The raw random numbers pass the statistical test suite B under all relevant environmental
conditions.
A.3 The developer verifies that the inner post-processing algorithm (if one exists, resp. if it is
different from the identity mapping) does not reduce the entropy per bit. Alternatively, the
developer provides evidence that the average entropy per internal random number remains
sufficiently large.
A.4 The internal random numbers pass the statistical test procedure A (and other statistical
standard test suites if applied) under all relevant environmental conditions.

322 Method B*
B.1 On the basis of the stochastic model the developer shows that the raw random numbers are
stationary distributed, and that there are no significant (long-step) dependencies that are not
covered by the statistical tests from test suite B.
B.2 The developer verifies on the basis of the stochastic model and the inner post-processing
algorithm (if it exists, resp. if it is different from the identity mapping) that the average entropy
per input bit of the DRG.3-post-processing exceeds a certain entropy bound (to be specified).
B.3 The internal random numbers pass the statistical test procedure A (and other statistical
standard test suites if applied) under all relevant environmental conditions.

323 Method A* guarantees average of 0.997 bit Shannon entropy per input bit (i.e., 7,976 bit
Shannon entropy per input octet) of the post-processing algorithm. To estimate the average
entropy per output bit, one may apply results on random mappings or random permutations.

324 Evaluation Method A* and Evaluation Method B* require that the PTRNG generates a single
random raw bit per time unit. If the entropy source generates k-bit raw random numbers (k > 1),
additional problems (e.g., dependencies between the bits of each k-bit raw random numbers,
different statistical behaviour of the particular bit traces) might occur and thus must be
considered. The evaluation may follow the line of Evaluation Method A* or of Evaluation B*
described above. Depending on the concrete PTRNG design, this might require the specification
of a new test procedure B’, which shall be at least as effective as test procedure B under the
conditions of Evaluation Method A*, or of Evaluation Method B*, respectively. The
effectiveness of the chosen test procedure B’ shall be explained.

325 In the definition of the different evaluation methods, environmental conditions are viewed as
relevant if they either (i) belong to the specified range of admissible working conditions, or (ii)
lie outside that range but cannot reliably be detected by anti-tamper measures (e.g., by sensors)
although they may affect the behaviour of the entropy source.

326 Each statistical test considers only particular statistical properties. In particular, there are no
generally-applicable blackbox tests that provide reliable entropy estimates for random numbers.
To be recognized as effective for a positive verification of security properties, a statistical test
must be based on a stochastic model.

327 Statistical tests, which estimate the entropy of a random sequence, (tacitly) assume that the
sequence has specific properties. The rationale behind the evaluation methods A* and B* is that

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 84

statistical tests cannot effectively be applied to the internal random numbers because the DRG.3
post-processing algorithm causes complicated dependencies within the internal random number
sequence.

4.6. Class DRG.1

328 The class DRG.1 defines requirements for deterministic RNGs. It shall not be possible to
distinguish the generated random numbers from output sequences from an ideal RNG by simple
statistical blackbox tests. DRG.1 conformant DRNGs provide forward secrecy.

329 An RNG of class DRG.1 might be used for applications that need fresh data that are distinct
from previously-generated data with high probability, e.g., to generate challenges in
cryptographic protocols or initialization vectors for block ciphers in special modes of operation,
provided that previous random numbers need not be protected. DRG.1-conformant DRNGs may
be used for zero-knowledge proofs (cf. par. 265).

4.6.1. Security functional requirements for the RNG class DRG.1

330 Functional security requirements of class DRG.1 are defined by component FCS_RNG.1 with
specific operations as given below.

FCS_RNG.1 Random number generation (Class DRG.1)

FCS_RNG.1.1 The TSF shall provide a deterministic26 random number generator that
implements:

(DRG.1.1) If initialized with a random seed [selection: using a PTRNG of class PTG.2
as random source, using a PTRNG of class PTG.3 as random source, using
an NPTRNG of class NTG.1 [assignment: other requirements for seeding]],
the internal state of the RNG shall [selection: have [assignment: amount of
entropy], have [assignment: work factor], require [assignment: guess
work]].

(DRG.1.2) The RNG provides forward secrecy. 27

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

(DRG.1.3) The RNG, initialized with a random seed [assignment: requirements for
seeding], generates output for which [assignment: number of strings]
strings of bit length 128 are mutually different with probability [assignment:
probability].

(DRG.1.4) Test procedure A [assignment: additional standard test suites] does not
practically distinguish the random numbers from output sequences of ideal
RNGs. 28

4.6.2. Application notes

26 [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]
27 [assignment: list of security capabilities]
28 [assignment: a defined quality metric]

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 85

331 The vulnerability analysis shall show that an attacker is not able to guess the internal state of the
DRNG with the attack potential that is claimed in the ST. The value assigned in clause
(DRG.1.1) shall meet the attack potential identified in the vulnerability analysis component.
The entropy of the initial internal state is an upper bound of the entropy of the generated random
number sequence. The entropy of the internal state may decrease over the lifetime of the DRNG
instantiation. The internal state of the DRNG shall contain sufficient entropy to prevent
successful guessing attacks within the lifetime of the DRNG instantiation. Table 12 gives lower
entropy bounds for the internal state. Its bit length must at least equal the minimal entropy
bound.

332 It is natural to generate the seed of a DRNG with a PTG.2- or PTG.3-conformant PTRNG. If the
internal state of the DRNG is initialized in this way, and if the internal state is at least 25%
larger (in bits) than the Min-entropy bounds given in Table 12, an explicit assessment of the
Min-entropy is not necessary. This is justified by the fact that PTG.2-conformant PTRNGs
generate stationary output sequences with large Shannon entropy, which ensures a large work
factor. Similarly, PTG.3-conformant PTRNGs also generate high-entropy random numbers (see
also the application notes for class PTG.3). We point out that tighter entropy bounds for PTG.2
and PTG.3 than the generic 25% margin (allowing smaller internal states) should be possible in
most cases but require justification (cf. stochastic model).

Table 12: Attack potential, Min-entropy, and recommended length of the internal state

Component of the vulnerability analysis Required min-
entropy of the
internal state

Recommended
length of the
internal state CC version 2.3 CC version 3.1

 AVA_VAN.1, 2
(basic)

³ 40 bit ³ 80 bit

AVA_SOF.1,
low

AVA_VLA.2
(low)

AVA_VAN.3
(enhanced basic)

³ 48 bit ³ 96 bit

AVA_SOF.1,
medium

AVA_VLA.3
(moderate)

AVA_VAN.4
(moderate)

³ 64 bit ³ 128 bit

AVA_SOF.1,
high

AVA_VLA.4
(high)

AVA_VAN.5
(high)

³ 100 bit ³ 200 bit

333 The (Min-)entropy of the internal state clearly depends on the initialization procedure with a
random seed, but also on the state transition function and possibly publicly known input. If

the state transition function is bijective (i.e., , for each publicly known input i), it
maintains the entropy of the internal state. If the state transition function behaves like a
randomly-selected mapping, it will reduce the number of possible internal states for some

observed public input data i (i.e.), thus reducing the entropy of the internal state

(cf. [FlOd89] for details about statistics of random mappings). The publicly-known input does
not increase the overall entropy of the system, but it might influence the process of entropy
reduction of the internal state over time and make attacks more difficult.

334 The security capability (DRG.1.2) forward secrecy means the following: subsequent (future)
values cannot be determined or guessed with non-negligible probability from current or

j
),(iSS j=

SiS <),(j

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 86

previous output values [ISO18031]. In particular, the design of the DRNG shall prevent a
successful guess the internal state, allowing the calculation of future output. The forward
secrecy capability requires that the internal state has sufficient entropy to prevent guessing as
well as the confidentiality of the current internal state is protected by the design of the DRNG
(e.g., one-way extended output function) and the security architecture of the TSF (cf. self-
protection accessed in ADV_ARC).

335 The security capability (DRG.1.3) requires the DRNG to generate mutually different pseudo-
random numbers. The first assignment in the element FCS_RNG.1.2 describes the requirements
on the seeding procedure (e.g., the entropy of the seed, how many random numbers can be
generated between two seeding procedures). Under this assumption, clause (DRG.1.3) defines
the capability of the DRNG to generate an assigned number (let’s say k) of fresh random strings
with given length of 128 bit being mutually different with at least the defined probability (let’s
say1 e- , i.e. e is the probability of at least one coincidence). If the DRNG generates shorter
output values (random numbers) several consecutive output values are concatenated and, if
necessary, these joint random bit strings are cut off after 128 bits. The selection of the
parameters � and K depends on the intended application of the DRNG described in the guidance
documentation:

- the requirements for seeding shall fit to the intended use cases, and

- during the lifetime of the DRNG instantiation (i.e., during the time between two seeding
processes) the DRNG must not produce more random bits than the product of the
assigned number � of output strings by their bit length.

The assigned number of strings, string length in bits, and probability shall allow to provide
evidence demonstrating that this requirement is fulfilled. The parameters assigned in the
element FCS_RNG.1.1 shall meet the attack potential identified in the vulnerability analysis
component.

336 Table 13 provides necessary conditions to resist attacks, which are based on the repetition of
random strings generated by the RNG and are exploitable in the intended environment with the
identified attack potential. The TOE might be vulnerable if the RNG is used for purposes that
require other properties of the RNG. In this case, the developer shall consider an RNG with
additional security features, like class DRG.2 and higher.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 87

Table 13: Requirements for the parameters in (DRG.1.3) depending on claimed attack potential

Component of the vulnerability analysis Parameter denotes the
number of output strings that

shall be mutually different with
probability L B �K

CC version 2.3
CC version 3.1

 AVA_VAN.{1, 2}
(basic)

 and

AVA_SOF.1,
low

AVA_VLA.2
(low)

AVA_VAN.3
(enhanced basic)

 and

AVA_SOF.1,
medium

AVA_VLA.3
(moderate)

AVA_VAN.4
(moderate)

 and

AVA_SOF.1,
high

AVA_VLA.4
(high)

AVA_VAN.5
(high)

 and

337 For an ideal RNG the probability for at least one collision within the first � @H bit output

strings is approximately ()2 1291 exp / 2k- - . The expected number of bit strings until the first

collision can be approximated by 63,52p (cf. formulae (30) and (31)).

338 The developer may or may not assign additional standard test suites (i.e. the assignment is
empty) in the element FCS_RNG.1.2 clause (DRG.1.4). The effort of testing to demonstrate that
test procedure A and the assigned test suites do not practically distinguish the RNG output from
uniformly distributed random bit sequences depends on the resistance against attacks as claimed
in the ST (cf. selected component of the family AVA_VAN). The quality metric (DRG.1.4) is
different from (PTG.1.5):

- the class PTG.1 generates true random numbers, which cannot be distinguished from
ideal random numbers by tests with the test procedure A and - if assigned in clause
(PTG.1.5) – with the additional standard test suites,

- the DRG.1 generates deterministic random numbers, but they cannot be distinguished
from ideal random numbers by tests with the test procedure A and - if assigned in
clause (DRG.1.4) - with the additional standard test suites.

The DRNG gets its initial random state from a randomly selected seed. The most straight-
forward methods are to use the seed as the initial internal state or to apply the state transition
function to the seed. The output string from the initial internal state is part of the
deterministically-generated output sequence. The entropy of the output string (and, therefore, of
the random numbers generated) cannot be greater than the entropy of the seed. Depending on
the seeding procedure of the DRNG, the tests are applied to one or more output strings.

4.6.3. Further aspects

339 In many cases it may be practically infeasible to specify the distribution pA of the first internal
state. It suffices to specify a set of distributions that contains pA if all elements of this set fulfil

k

142k > 82e -<

192k > 102-<e

262k > 122-<e

342k > 162-<e

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 88

the requirements of class DRG.1. Example: The seed entropy exceeds a certain lower entropy
bound, e.g. because the seed has been generated with an RNG that is conformant to class
PTG.2, PTG.3 or NTG.1. The security architecture description shall describe the secure
initialization process of the RNG.

4.7. Class DRG.2

340 The class DRG.2 defines requirements for deterministic RNGs. It shall not be possible to
distinguish the generated random numbers from output sequences from an ideal RNG by
statistical tests, and the generated random numbers sequence shall have at least some minimum
amount of Min-entropy (contained in the seed), and backward secrecy is ensured. The class
DRG.2 includes the properties of class DRG.1.

341 RNGs of class DRG.2 may be used for the generation of cryptographic keys and parameters,
pseudo-random padding bits, etc. (cf. par. 265). The TSF protects the internal state of the RNG
from being compromised.

4.7.1. Security functional requirements for the RNG class DRG.2

342 Functional security requirements of the class DRG.2 are defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class DRG.2)

FCS_RNG.1.1 The TSF shall provide a deterministic29 random number generator that
implements:

(DRG.2.1) If initialized with a random seed [selection: using a PTRNG of class PTG.2
as random source, using a PTRNG of class PTG.3 as random source, using
an NPTRNG of class NTG.1 [assignment: other requirements for seeding]],
the internal state of the RNG shall [selection: have [assignment: amount of
entropy], have [assignment: work factor], require [assignment: guess
work]].

(DRG.2.2) The RNG provides forward secrecy.

(DRG.2.3) The RNG provides backward secrecy. 30

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

(DRG.2.4) The RNG, initialized with a random seed [assignment: requirements for
seeding], generates output for which [assignment: number of strings]
strings of bit length 128 are mutually different with probability [assignment:
probability].

(DRG.2.5) Statistical test suites cannot practically distinguish the random numbers
from output sequences of an ideal RNG. The random numbers must pass test
procedure A [assignment: additional test suites]. 31

29 [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]
30 [assignment: list of security capabilities]

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 89

4.7.2. Application notes

343 Class DRG.2 includes the requirements of class DRG.1 for the security capability (DRG1.1)
and the quality of the random numbers, (DRG.1.2) and (DRG.1.3). The application notes for
class DRG.1 are valid for class DRG.2, as well. The (DRG.2.4) parameters must meet the
conditions in Table 13.

344 The class DRG.2 requires assigned quality of internal state in (DRG.2.1). The clauses
(DRG.2.2) and (DRG.2.3) require forward and backward secrecy according to [ISO18031], i.e.,
that unknown previous or future output values cannot be determined from known output values
(random numbers). The developer should select a cryptographic function for the one-way
extended output function and should consider (but is not requested to choose) a cryptographic
one-way function for the state transition function, as well. The whole internal state is viewed as
input, including cryptographic keys. Hence, keyed bijections, typically coming from strong
block ciphers, also count as one-way functions (cf. section 5.3 for details).

345 If the DRNG is intended for the generation of cryptographic keys, the entropy in the element
FCS_RNG.1.1 clause (DRG.2.1), should meet the security level of the cryptographic algorithm.
If no cryptographic weaknesses are known, the security level of a symmetric cryptographic
algorithm is assumed to be equal to its key length. For example, if the assignment in the element
FCS_RNG.1.1 clause (DRG.2.1) assigns ³ 128 bit Min-entropy to its internal state, the DRNG
may be used to generate AES-128 bits. If the internal state contains less entropy, the AES key
generation by means of such a DRNG might be viewed as a potential vulnerability of the
cryptosystem.

346 The element FCS_RNG.1.2, clause (DRG.2.5), requires that statistical tests cannot practically
distinguish the random numbers from output sequences of an ideal RNG. The effort of testing in
order to demonstrate that the statistical test suites cannot practically distinguish the RNG output
from uniformly distributed random bit sequences depends on the resistance against attacks as
claimed in the ST (cf. selected component of the family AVA_VAN). The effort of testing is
defined by the used test suites and the amount of test data. The developer shall provide
functional tests with test procedure A and maybe other appropriate tests suites or specific tests
that are tailored to the particular DRNG. The evaluator may provide additional statistical test as
penetration tests. Of course, clause (DRG.2.5) excludes ‘unfair’ tests that exploit the knowledge
of the given internal state.

347 Note that the one-way property of the output function is a necessary condition for forward
secrecy, but not a sufficient condition for good statistical properties of the DRNG output. For
example, if the DRNG outputs the hash value of the internal state, the output is expected to be
indistinguishable from the output of an ideal RNG. If the DRNG output function concatenates
statistically weak strings (e.g., a sequence number of the output) to this hash values, this might
no longer be true.

4.7.3. Further aspects

348 In many cases it may be practically infeasible to specify the distribution pA of the first internal
state. It suffices to specify a set of distributions that contains pA if all elements of this set fulfil
the requirements of class DRG.2. Example: The seed entropy exceeds a certain lower entropy
bound, e.g. because the seed has been generated with an RNG that is conformant to class

31 [assignment: a defined quality metric]

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 90

PTG.2, PTG.3 or NTG.1. The security architecture description shall describe the secure
initialization process of the RNG.

4.8. Class DRG.3

349 The class DRG.3 defines requirements for deterministic RNGs. It shall not be possible to
distinguish the generated random numbers from output sequences from an ideal RNG by
statistical tests, and the generated random numbers sequence shall have at least some minimum
amount of Min-entropy (contained in the seed), and enhanced backward secrecy is ensured. The
class DRG.3 includes the requirements of class DRG.2.

350 RNGs of class DRG.3 might be used for the generation of cryptographic keys and parameters,
pseudo-random padding bits, etc. (cf. par. 265). Any compromise of the internal state of the
DRNG shall be detected, and re-seeding shall be enforced before further use of the RNG.

4.8.1. Security functional requirements for the RNG class DRG.3

351 Functional security requirements of the class DRG.3 are defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class DRG.3)

FCS_RNG.1.1 The TSF shall provide a deterministic32 random number generator that
implements:

(DRG.3.1) If initialized with a random seed [selection: using a PTRNG of class PTG.2
as random source, using a PTRNG of class PTG.3 as random source, using
an NPTRNG of class NTG.1 [assignment: other requirements for seeding]],
the internal state of the RNG shall [selection: have [assignment: amount of
entropy], have [assignment: work factor], require [assignment: guess
work]].

(DRG.3.2) The RNG provides forward secrecy.

(DRG.3.3) The RNG provides backward secrecy even if the current internal state is
known. 33

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

(DRG.3.4) The RNG, initialized with a random seed [assignment: requirements for
seeding], generates output for which [assignment: number of strings]
strings of bit length 128 are mutually different with probability [assignment:
probability].

(DRG.3.5) Statistical test suites cannot practically distinguish the random numbers
from output sequences of an ideal RNG. The random numbers must pass test
procedure A [assignment: additional test suites].34

32 [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]
33 [assignment: list of security capabilities]

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 91

4.8.2. Application notes

352 The class DRG.3 includes the requirements of class DRG.2 for the security capabilities
(DRG.2.1), (DRG.2.2), and (DRG.2.3), and the quality metrics in (DRG.2.4) and (DRG.2.5).
The application notes for class DRG.2 are valid for the class DRG.3 as well. It adds
requirements for security capabilities referring to enhanced backward secrecy in (DRG.3.3).

353 While (DRG.2.2) and (DRG.2.3) require forward and backward secrecy (i.e., unknown output
value cannot be determined from known output values), the security capabilities (DRG.3.2) and
(DRG.3.3) additionally require enhanced backward secrecy. This means that previous output
values cannot even be determined with knowledge of the current internal state and current and
future output values. Enhanced backward secrecy might be relevant, for instance, for software
implementations of a DRNG when the internal state has been compromised while all random
numbers generated in the past shall remain secret (e.g., cryptographic keys).

354 Clause (DRG.3.3) essentially requires a cryptographic state transition function. DRG.3-
conformant designs with non-cryptographic output functions may exist. However, it is
recommended to apply a cryptographic output function.

4.8.3. Further aspects

355 In many cases it may be practically infeasible to specify the distribution pA of the first internal
state. It suffices to specify a set of distributions that contains pA if all elements of this set fulfil
the requirements of class DRG.3. Example: The seed entropy exceeds a certain lower entropy
bound, e.g. because the seed has been generated with an RNG that is conformant to class
PTG.2, PTG.3 or NTG.1. The security architecture description shall describe the secure
initialization process of the RNG.

4.9. Class DRG.4

356 Class DRG.4 defines requirements for hybrid deterministic RNGs that primarily rely on the
security imposed by computational-complexity, which is ‘enhanced’ by additional entropy from
a physical true RNG. RNGs of class DRG.4 clearly may be used for the same cryptographic
applications as DRG.3-conformant DRNGs, and additionally for applications that require
enhanced forward secrecy.

357 Class DRG.4 is based on class DRG.3 but may not use an external source of randomness for the
seeding process. RNGs of class DRG.4 contain an internal source of randomness for seeding
and reseeding, resp. seed-update (to ensure forward secrecy).

4.9.1. Security functional requirements for the RNG class DRG.4

358 Functional security requirements of the class DRG.4 are defined by component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class DRG.4)

34 [assignment: a defined quality metric]

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 92

FCS_RNG.1.1 The TSF shall provide a hybrid deterministic35 random number generator
that implements:

(DRG.4.1) The internal state of the RNG shall [selection: use PTRNG of class PTG.2
as random source, have [assignment: work factor], require [assignment:
guess work]].

(DRG.4.2) The RNG provides forward secrecy.

(DRG.4.3) The RNG provides backward secrecy even if the current internal state is
known.

(DRG.4.4) The RNG provides enhanced forward secrecy [selection: on demand, on
condition [assignment: condition], after [assignment: time]].

(DRG.4.5) The internal state of the RNG is seeded by an [selection: internal entropy
source, PTRNG of class PTG.2, PTRNG of class PTG.3, [other selection]].36

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

(DRG.4.6) The RNG generates output for which [assignment: number of strings]
strings of bit length 128 are mutually different with probability [assignment:
probability].

(DRG.4.7) Statistical test suites cannot practically distinguish the random numbers
from output sequences of an ideal RNG. The random numbers must pass test
procedure A [assignment: additional test suites].37

4.9.2. Application notes

359 Class DRG.4 includes the requirements of class DRG.3 for the security capabilities (DRG.3.1)
and (DRG.3.3) and the quality metrics of (DRG.3.4) and (DRG.3.5). The assignment in clause
(DRG.4.1) should meet the conditions presented in Table 13 (cf. also the application notes for
DRG.2). The assignment in clause (DRG.4.6) should meet the conditions of Table 13.
(DRG.4.1) and (DRG.4.6) do not depend on an external entropy source because the RNG is
seeded by the internal random source identified in (DRG.4.5). Under this consideration, the
application notes for class DRG.3 are applicable for the class DRG.4.

360 DRG.4 includes the forward secrecy according to [ISO18031], i.e., subsequent (future) values
cannot be determined from current or previous output values, and adds requirements for
enhanced forward secrecy (DRG.4.4), i.e., after the identified event or time, the subsequent
(future) output values cannot be determined from current or previous output values, even if the
current internal state is compromised.

361 The selection in FCS_RNG.1.1 clause (DRG.4.4) depends on the implementation of the
reseeding process, resp. of seed update process. The TOE may provide forward secrecy on
demand, e.g., if the RNG is used for the generation of sensitive cryptographic keys like a

35 [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]
36 [assignment: list of security capabilities]
37 [assignment: a defined quality metric]

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 93

signature-creation key in a smart card. The TOE may provide forward secrecy on condition or
after time, e.g., if the RNG gets continuously fresh entropy from the internal entropy source.
The assignments shall consider the seeding procedure and the entropy, which is provided by the
internal physical true RNG.

362 The security capability of forward secrecy in (DRG.4.4) requires fresh entropy that is provided
by the internal source of randomness for reseeding or seed-updating the internal state. If
“ internal entropy source” is selected in clause (DRG.4.5), the RNG shall implement
mechanisms (entropy estimator) to ensure that the internal entropy source has provided
sufficient entropy to ensure forward secrecy. A combination of an online test of the internal
entropy source and the condition selected in (DRG.4.4) may ensure a (suitably large) lower
entropy bound. If “physical true RNG of class PTG.2” or “physical true RNG of class PTG.3” is
selected, these tests are required as security capabilities of the PTG class (cf. to class definition
above). Note that the selection in clauses (PTG.4.1) and (PTG.4.5) shall be consistent if an
internal entropy source is used for seeding.

363 The (first) seeding of the internal state might be done within a personalization process with an
external entropy source. This ensures that the internal state is unknown from the beginning even
if forward secrecy is assured only on demand and if the first application does not apply for
forward secrecy.

4.9.3. Further aspects

364 In many cases it may be practically infeasible to specify the distribution pA of the first internal
state. It suffices to specify a set of distributions that contains pA if all elements of this set fulfil
the requirements of class DRG.4. Example: The seed entropy exceeds a certain lower entropy
bound, e.g. because the seed has been generated with an RNG that is conformant to class PTG.2
or PTG.3. The security architecture description shall describe the secure initialization process of
the RNG.

365 The security architecture must protect the internal state of a DRNG as one aspect of self-
protection. If the internal state has been compromised backward secrecy DRG.4.3 ensures the
secrecy of all previous random numbers while enhanced forward secrecy DRG.4.4 ensures the
secrecy of the random numbers that will be generated after the next reseeding, resp. the next
seed update. However, if an attacker knows the current internal state he may calculate all output
values that are generated before the next reseeding, resp. the next seed update.

4.10. Class NTG.1

366 The class NTG.1 defines requirements for non-physical true RNGs that rely on information-
theoretical security (similar as physical RNGs) but use external input signals as entropy source.
Additionally, a suitable cryptographic post-processing algorithm shall provide a second security
anchor.

4.10.1. Security functional requirements for the NPTRNG class NTG.1

367 Functional security requirements of the class NTG.1 are defined by the component FCS_RNG.1
with specific operations as given below.

FCS_RNG.1 Random number generation (Class NTG.1)

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 94

FCS_RNG.1.1 The TSF shall provide a non-physical true38 random number generator that
implements:

(NTG.1.1) The RNG shall test the external input data provided by a non-physical
entropy source in order to estimate the entropy and to detect non-tolerable
statistical defects under the condition [assignment: requirements for
NPTRNG operation].

(NTG.1.2) The internal state of the RNG shall have at least [assignment: Min-entropy].
The RNG shall prevent any output of random numbers until the conditions
for seeding are fulfilled.

(NTG.1.3) The RNG provides backward secrecy even if the current internal state and
the previously used data for reseeding, resp. for seed-update, are known. 39

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

(NTG.1.4) The RNG generates output for which [assignment: number of strings]
strings of bit length 128 are mutually different with probability [assignment:
probability].

(NTG.1.5) Statistical test suites cannot practically distinguish the internal random
numbers from output sequences of an ideal RNG. The internal random
numbers must pass test procedure A [assignment: additional test suites].

(NTG.1.6) The average Shannon entropy per internal random bit exceeds 0.997.40

4.10.2. Application notes

368 A non-physical true RNG comprises three parts:

- the input pre-computation block, which computes the input for the internal DRNG from
several external input signals provided by (usually several) entropy sources,

- the entropy pool, which collects entropy and computes the output,

- the control block, which prevents the output of random numbers until the RNG has
sufficient entropy to ensure the randomness of the output.

369 The class NTG.1 combines security capabilities of deterministic RNGs and security capabilities
similar to those of physical true RNGs. By clause (NTG.1.3) the entropy pool with its updating
mechanism and output function (viewed as a DRNG) is DRG.3-conformant.

370 The security capability (NTG.1.1) checks the external input signals from the entropy sources
with regard to total failure and non-tolerable weaknesses. Usually, an ‘entropy counter’
(applying heuristic rules) is kept to provide plausibility that enough fresh entropy in mixed up
with the current internal state. The entropy counter reduces the (estimated) entropy of the
internal state by m whenever m bits are output. If the value of the entropy counter is smaller

38 [selection: physical, non-physical true, deterministic, hybrid physical, hybrid deterministic]
39 [assignment: list of security capabilities]
40 [assignment: a defined quality metric]

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 95

than m the output of an m-bit string is prohibited. One says the input is “rated for entropy
estimation”.

371 Online tests for NPTRNGs, however, will usually be very different from online tests for classes
PTG.2 or PTG.3 because locally the input data for NPTRNGs may provide only low entropy;
they might be biased or strongly dependent. It is usually impossible to formulate a precise
stochastic model for input data of NPTRNGs.

372 The security capability (NTG.1.2) is the same as (DRG.2.4). The security capability (NTG.1.3)
of enhanced backward secrecy is the same as (DRG.3.4). The class NTG.1 includes the
requirements for the quality of the random numbers (DRG.1.3), (DRG.2.5), and (PTG.2.7).

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 96

5. Examples

373 This chapter discusses several examples that shall illustrate the theoretical concepts, which have
been explained in the previous chapters.

5.1. Guesswork for binomial distributed data

374 In chapter 2.3.2 we introduced the concept of guess work. The next example shows how to
calculate the guess work for a specific scenario..

Example 1: Guess work for vectors with independent biased bits

375 Assume that the attacker guesses realizations of binary vectors with

independent components , , , . Then

 (17)

with , while denotes the HAMMING weight of . For

, probability (17) increases with the HAMMING weight. One clearly begins with the

guess consisting of n ones, then one checks all vectors with HAMMING weight n-1, all vectors
with HAMMING weight n-2, etc. until the searched vector has been found. In the least favourable
case, we must check vectors.

1 2(, , ,)nX X X X= �

iX { }1iP X p= = { }0 1iP X p= = - 1,2, ,i n= �

{ } () ()(1)h b n h bP X b p p -= = × -

{ }1 2(, , ,) 0,1
n

nb b b b= Î� ()h b b

0.5p >

1

, 2 ,nN N =

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 97

Figure 7: Probabilities of vectors of length n = 10

The term quantifies the “advantage” over the uniform distribution one has when

considering all vectors that are assumed with probability larger than . For we
define

,

i.e., k is the down-rounded solution x of the equation . From this, one
immediately obtains the inequations

.

1/N

||b-u||

p=0.55

1/N

||b-u||

p=0.55

b u-
n-2 0.5p >

lg(1) lg2
lg(1) lg

p
k n

p p
� �- +

= � �- -� �

2 (1)n x n xp p- -= -

1 1(1) 2 (1)k n k n k n kp p p p- - + - -× - £ £ × -

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 98

In our example

Figure 8: Success probability (p = 0.55, n = 10)

376 The Figure 8 shows the success probability as a function of the number of vectors that have
already been checked. The dotted line represents the success probability for the uniform

distribution, which has work factor .

It is well known that (binomial distribution). The statistics

program R may be used to evaluate the above formula for concrete parameters:

dbinom(k,n,p) calculates

lg(0.45) lg2
10 5.250419 5

lg(0.45) lg(0.55)
k

� �+
= = =� �� �� �-� �

5 5 -10 6 40.55 0.45 0.0009287012 2 0.0009765625 0.55 0.45 0.001135079× » £ » £ × »
0.

5

W1/2 N/2

p=0.55

0.
5

W1/2 N/2

0.
5

W1/2 N/2

p=0.55

12n-

{ }() (1)k n kn
P h X k p p

k
-� �

= = -� �
� �

{ }() (1)k n kn
P h X k p p

k
-� �

= = -� �
� �

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 99

pbinom(m,n,p) calculates the cumulative distribution function

pbinom(m,n,p,lower.tail=F) calculates

qbinom(q,n,p) calculates the quantile function, given by

where k and m are vectors of quantiles41, size denotes the number of observations (in our
example, n), and prob stands for a vector of probabilities (in our example, p).

377 Alternatively, we may apply the binomial distribution to the number of 0’s instead of applying it
to the number of 1’s. Note that we begin with a vector that contains no 0, etc.. For n = 10 and p=
1-0.55 = 0.45 we get

pbinom(3,10,0.45) = 0.2660379, pbinom(4,10,0.45) = 0.5044046

pbinom(3,10,0.5)*(2^10) = 176 (i.e number of vectors with maximum 3 times “0”)

Each vector with 4 times “0” has a probability of (0.454)*(0.556) = 0.001135079.

(0.5-pbinom(3,10,0.45))/((0.454)*(0.556)) = 206.1196

Indeed we get

pbinom(3,10,0.45)+206*(0.454)*(0.556) = 0.4998643

pbinom(3,10,0.45)+207*(0.454)*(0.556) = 0.5009994

Finally

.

5.2. Contingency tables

Example 2: Contingency table 2x4

378 Assume that one observes two sequences of 400 events and compiles contingency tables as
shown below. Applying the build in R D(test function chisq.test, one obtains results as
given in the two tables (3 degrees of freedom):

Observed data, case 1

41 The a-quantil of the random variable is the value pa that { }P X pa a£ = .

{ }
0

() (1)
m

k n k

k

n
P h X m p p

k
-

=

� �
£ = -� �

� �
�

{ }
0

() 1 (1)
m

k n k

k

n
P h X m p p

k
-

=

� �
> = - -� �

� �
�

{ }{ }min ()m P h X m q£ ³

0.5 4 6

0.5 (3,10,0.45)
(3,10,0.5) 383

0.45 0.55
pbinom

w pbinom
-� �= + =� �×� �

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 100

 0 1 2 3 Sum of rows

0 41 40 51 50 182

1 41 62 54 61 218

Sum of column 82 102 105 111 Sum in general: 400

R script:

count_tab1 <- matrix(c(41,41,40,62,51,54,50,61),nro w=2,ncol=4)
 [,1] [,2] [,3] [,4]
[1,] 41 40 51 50
[2,] 41 62 54 61
count_tab1; chisq.test(count_tab1, correct=TRUE)
 Pearson's Chi-squared test
data: count_tab1
X-squared = 2.7028, df = 3, p-value = 0.4398

The chi-squared = 2.7028 and the p-value = 0.4398. The test does not reject the Null hypothesis
on independence.

Observed data, case 2

 0 1 2 3 Sum of rows

0 61 59 61 34 215

1 44 36 46 59 185

Sum of column 105 95 107 93 Sum in general: 400

R script:

count_tab2 <- matrix(c(61,44,59,36,61,46,34,59),nro w=2,ncol=4)
 [,1] [,2] [,3] [,4]
[1,] 61 59 61 34
[2,] 44 36 46 59
count_tab2; chisq.test(count_tab2, correct=TRUE)
 Pearson's Chi-squared test
data: count_tab2
X-squared = 14.9783, df = 3, p-value = 0.001835

The chi-squared = 14.9783 and the p-value = 0.001835. The test rejects the Null hypothesis on
independence because the p-value is less than 0.01.

Example 3: Contingency table 2x2

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 101

379 For testing the 1bit-to-1bit dependency (i.e.,) by means of a -contingency table,
one may calculate the power of the test.

 Frequencies Probabilities

 0 1 0 1

0

1

Since the process is assumed to be stationary, and .

Suppose that the consecutive bits are not independent, i.e., that . The power of the test

 is the probability that the test rejects the Null hypothesis if it is false. This depends on the

bias, i.e., and , the number of observations , and the probability of error

type 1, i.e., the level of significance . The R function power.prop.test allows the
calculation of any of the parameters , , , , and if the others are given. Exactly one

of the parameters , , , , and must be passed as NULL, and this parameter is

determined from the others.

Example 4: Calculation of the power of a -contingency table test

380 We calculate the power of a -contingency table test

power.prop.test(p1=0.495,p2=0.505,sig.level=0.05,n= 70000)
Two-sample comparison of proportions power calculat ion
n = 70000
p1 = 0.495
p2 = 0.505
sig.level = 0.05
power = 0.9626076
alternative = two.sided
NOTE: n is number in *each* group
Calculation of the number of necessary observations
power.prop.test(p1=0.495,p2=0.505,sig.level=0.01,po wer=0.99)

Two-sample comparison of proportions power calculat ion
n = 120151
p1 = 0.495
p2 = 0.505
sig.level = 0.01
power = 0.01

1x y= = 2 2´

00n 01n 0n · { }00 1(,) (00)i ip P B B+= = { }01 1(,) (01)i ip P B B+= = { }0 1 0ip P B· += =

10n 11n 1n · { }10 1(,) (10)i ip P B B+= = { }11 1(,) (11)i ip P B B+= = { }1 1 1ip P B· += =

0n· 1n · n { }0 0ip P B· = = { }1 1ip P B· = =

0 0 00 01p p p p· ·= = + 1 1 10 11p p p p· ·= = +

01 11p p¹
b

0 01:p p= 1 11:p p= n
a

n 0p 1p a b

n 0p 1p a b

2 2´

2 2´

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 102

alternative = two.sided
NOTE: n is number in *each* group.

381 The following script for R is an example showing how to analyse binary data for dependencies
between consecutive bits. Note that this example is not optimized code.

contingency table analysis of bit patterns in byt e sequences

bits are enumerated for 0 to 7, least significant bit is 0-bit

pattern is sequence of bit numbers, e.g. 0, 2 and 3

definition of helping function

byte2bit <- matrix(rep(0,8*256),ncol=256)

for (i in 1:8)

{

 b <- 2^(i-1)

 for (j in 1:256) byte2bit[i,j] <- ((j-1)%/%b)%%2

}

function fbyte2bit(x,i) generates an array of bit s, where

fbyte2bit(x,i) ist bit i in byte x

fbyte2bit = function(x,i)

{

 if ((0 <= min(x)) & (max(x) <=255)) y <- byte2bit [i+1,x+1] else y <- NA

 return(y)

}

definition of parameters

setwd("D:\\test") # put the working d irectory here

data_file_name <- "random.bin" # put the data file name here

data_length <- file.info(data_file_name)$size # l ength of data in bytes

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 103

first_pattern <- c(0,2,3) # example of first bit pattern to test

second_pattern <- c(5,6,7) # example of second bit pattern to test

reading test byte stream

byte_sequence<-readBin(data_file_name,integer(),siz e=1,n=data_length,
signed=FALSE)

calculate vector of byte values with selected pat tern

first_pattern_vector <-
(2^first_pattern)%*%fbyte2bit(byte_sequence,first_p attern)

second_pattern_vector <-
(2^second_pattern)%*%fbyte2bit(byte_sequence,second _pattern)

(chisq.test(table(first_pattern_vector,second_patte rn_vector)))

382 It produces an output like this

Pearson's Chi-squared test

data: table(first_pattern_vector, second_pattern_v ector)

X-squared = 45.2399, df = 49, p-value = 0.6263

5.3. Forward and backward secrecy

383 In this section we discuss forward secrecy, backward secrecy, and enhanced backward secrecy
as security capabilities. We provide some elementary examples for illustration. These security
capabilities are typically for DRNGs and the cryptographic post-processing algorithms for
PTRNGs and NPTRNGs. Note that the following examples are not intended as advice for good
DRNG design.

384 For simplicity, we interpret a DRNG as a Mealy machine; that is, a pure DRNG that runs
without any external input after seeding,

, and , for all . (59)

385 Forward secrecy is the assurance that subsequent (future) values cannot be determined from
current or previous output values. Suppose that the current or previous output values

1 2
, , ,

ki i ir r r� at time 1 2, , , ki i i� are known and that the attacker wants to calculate the output

value for some index 1 2, , , ki i i n<� . The attacker might use the system of relations:

: S Sj ® 1 : ()n ns sj+ = : S Ry ® : ()n nr sy= 1³n

nr

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 104

)))(((1

j

j

i
in

n rr --Î yjy for kj ,...,2,1= . (60)

(Note that the output function y is not invertible in general, and hence one must check all the

elements in the pre-image)(1
jir

-y .) If the internal state s is known, the state transition

function j and the output function y are easy to evaluate. Thus, it shall be difficult to
calculate the pre-image, e.g., because it is too large or if y is a cryptographic one-way
function.

386 Backward secrecy ensures that previous output values cannot be determined from current or
future output values. Assume that the current or future output values

1 2
, , ,

ki i ir r r� at time instant

1 2, , , ki i i� are known and that the attacker wants to calculate the output value for some

index 1 2, , , ki i i n<� . The attacker might apply the system of relations:

)))(((1

j

j

i
in

n rr --Î yjy for kj ,...,2,1= . (61)

If the internal state s is known, the state transition function and the output function are

easy to evaluate. Thus, the composition shall be hard to compute (note that

 for). One may choose the state transition function and the output

function as appropriate cryptographic one-way functions.

387 Enhanced backward secrecy ensures that previous values cannot be determined from the current
internal state, or from current or future output values. Because of lack of (unknown) input for a
DRNG as Mealy machine, knowledge of the current internal state is sufficient to calculate

current and future output values at times , . Thus, the

attacker knows the current internal state and wants to calculate the output value , .
The attacker might use the system of relations:

))((c
cn

n sr -Î jy for kj ,...,2,1= . (62)

Because the output function is easy to calculate, the state transition function and its

negative power shall be cryptographic one-way functions.

388 In the following examples, suppose the DRNG has the internal state ,

),...,,()(
128

)(
2

)(
1

)(i
j

i
j

i
j

i
j ssss =

for 2,1=j ; and denotes AES-128 [AES] for plaintext x

and key k.

Example 5: (backward secrecy, no forward secrecy)

389 Suppose the DRNG uses the state transition function

and the output function . Note that the plaintext s2
(i) becomes the key in the

next step.

nr

j y
1jn ij y- -�

0jn i- < 1,2, ,j k= � j
y

cs

1 2
, , ,

ki i ir r r� 1 2, , , ki i i� 1 2, , , ki i i c>�

cs nr c n>

y j
jj

() () ()
1 2(,)i i is s s=

(,)AES k x

(1) () () () ()
2 1 1() ((,),)i i i i is s AES s s sj+ = =

(1) () ()
2()i i ir s sy+ = =

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 105

390 Breaking forward secrecy requires a simple AES-128 calculation .

391 This DRNG ensures backward secrecy because as a one-way function for the
key k prevents calculation of previous output, even if the (plaintext/ciphertext) pair is
known.

s2s1

s2s1

Time i

Time i+1

AES-128

Internal states Output

r

(i) (i)

(i+1) (i+1) (i+1)

s2s1

s2s1

Time i

Time i+1

Time i+2

Time i+3

AES-128

s2s1

s2s1

AES-128

AES-128

failed forward secrecy

given output

r

(i+3)

(i) (i)

(i+1) (i+1) (i+1)

(i+2) (i+2) r(i+2)

(i+3) r(i+3)

calculated output

given output

s2s1

s2s1

Time i

Time i+1

Time i+2

Time i+3

AES-128

s2s1

s2s1

AES-128

AES-128

failed forward secrecy

given output

r

(i+3)

(i) (i)

(i+1) (i+1) (i+1)

(i+2) (i+2) r(i+2)

(i+3) r(i+3)

calculated output

given output

(,)c AES k p=
),(cp

),)2 () 1 ()3 (+++ = i i i r (r AES r

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 106

As the attacker knows the current output and partly knows the internal state or

 at time , the attacker is able to calculate the previous internal state at time ,

because , and , but cannot calculate

.

Example 6: (forward and backward secrecy)

392 Suppose the DRNG uses the state transition function

(as in the previous example) and the output function .

The attacker cannot calculate the internal state from the output values, because the output
function is a one-way function for any fixed 42.

42 under the assumption that the AES-128 behaves like a randomly-selected function

s2s1

s2s1

Time i

Time i+1

Time i+2

Time i+3

AES-128

s2s1

s2s1

AES-128

AES-128

backward secrecy

given output

r

(i+3)

(i) (i)

(i+1) (i+1) (i+1)

(i+2) (i+2) r(i+2)

(i+3) r(i+3)

unknown output

given output

AES-128 as one-
way function for
the key

s2s1

s2s1

Time i

Time i+1

Time i+2

Time i+3

AES-128

s2s1

s2s1

AES-128

AES-128

backward secrecy

given output

r

(i+3)

(i) (i)

(i+1) (i+1) (i+1)

(i+2) (i+2) r(i+2)

(i+3) r(i+3)

unknown output

given output

AES-128 as one-
way function for
the key

(2)ir + (2)
1

is +

(2)
2
is + 2i + 1i +

(1) (2)
1 2:i is s+ += (1) 1 (2) (2)

1 1: (,)i i is AES r s+ - + += (1) (2)
2 :i is r+ +=

(1)ir +

)),,(()()(
1

)(
1

)(
2

)()1(iiiii sssAESss ==+ j
)(

1
)(

1
)(

2
)()1(),()(iiiii sssAESsr Å==+ y

s2s1

s2s1

Time i

Time i+1

AES-128

Internal states Output

r

(i) (i)

(i+1) (i+1) (i+1)

)(
2
is

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 107

Example 7: (enhanced backward secrecy)

393 Suppose the DRNG uses the state transition function
)),(,),(()()(

2
)(

2
)(

1
)(

1
)(

1
)(

2
)()1(iiiiiiii sssAESsssAESss ÅÅ==+ j and the output function

)(
2

)(
2

)(
2

)(
1

)()1(),()(iiiiii ssssAESsr ÅÅ==+ y .

The state transition function and the output function are different one-way functions.

5.4. Examples of post-processing algorithms

394 This section considers examples of post-processing algorithms. For further exposition, we refer
the interested reader to [Schi09b], section 2.5.

395 We use a description as generalized Mealy machine),,,,(** yjRIS . Let denote the set of

internal states, input alphabet, the input sequence of strings *I over ,

the output alphabet 1 2(, , ,)mr r r r= � the output sequence of strings over , 0s the initial

internal state, SIS ®´ ** :j the state function,),(: *
1 kkk iss j=+ , and *** : RIS ®´y

the output function,),(: *
1 kkk isr y=+ . Let o denote the empty string.

5.4.1. Von Neumann unbiasing

396 Von Neumann unbiasing works asynchronously, i.e., it receives pairs of bits as
input, but does not generate any output for certain input pairs. Moreover, it has no internal state,

i.e., is the empty set. and

s2s1

s2s1

Time i

Time i+1

AES-128

Internal states Output

(i+1) (i+1)

(i) (i)

r(i+1)

AES-128

AES-128

s2s1

s2s1

Time i

Time i+1

AES-128

Internal states Output

(i+1) (i+1)

(i) (i)

r(i+1)

AES-128

AES-128

S
I ()niiii ,,, 21 �= I R

*R R

),(122 += kkk jji

S { } { }o,1,0,1,0 2 == RI

�
�
�

�
�
	

�

=

=

=

=

==¢

)11(

)00(

)10(1

)01(0

),(*

k

k

k

k

kk

ifor

ifor

ifor

ifor

isr

o
o

y

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 108

The output sequence is the concatenation of all , .

397 Lemma 3: If is a sequence of independent but biased bits, von Neumann

unbiasing generates a sequence of independent and unbiased output bits with

.

5.4.2. Xoring of non-overlapping segments of independent bits

398 Assume that with independent, identically-distributed biased binary-

valued random variables as components, i.e., for all we have and

 with . Denote

,

, and

.

We calculate

.

399 The xor-sum of the bits smoothes exponentially the bias of the independent bits. These sums are
independent, as well.

5.4.3. Two sources

400 Suppose that post-processing calculates the function of two random variables X

and Y with values in , where X ranges over the set with

distribution , w.l.o.g. , and Y over the set

with distribution , w.l.o.g. . The distribution of Z is given by

. Suppose further that f is invertible in the second

argument, or more precisely: For each i and j, there exists exactly one k with ,

. Therefore, the function f generates for each i a permutation over

r { }1,0Î¢kr nk ,1Î

()njjj 221 ,,, �

()mrrrr ,,, 21 �=

2/nm £

()1 2, , , nX X X X= �

jX 1,j nÎ { } 00jP X p= =

{ } 11jP X p= = { } { }0 1i iP X P Xe = = - =

/ 2
2 2

0, 1 0
1 0

: 0 mod 2
2

nn
n k k

n i
i k

n
p P X p p

k

� �� �
-

= =

� �� �
= º =	
 � �

� � � �
� �

(1) / 2
2 1 2 1

1, 1 0
1 0

: 1 mod 2
2 1

nn
n k k

n i
i k

n
p P X p p

k

-� �� �
- - +

= =

� �� �
= º =	
 � �+� � � �

� �

0, 1,:n n np pe = -

/ 2 (1) / 2
2 2 2 1 2 1

0 1 0 1 0 1 0 1
0 0 0

() (1)
2 2 1

n nn
n n k n k k n k k n k k

k k k

n n n
p p p p p p p p

k k k
e

-� � � �� � � �
- - - - +

= = =

� � � � � �
= - = - = - =� � � � � �+� � � � � �

� � �

0 1n np p= -

),(YXfZ =
),,,(21 nzzz �),,,(21 nxxx �

{ } ii pXxP == nppp £££ �21),,,(21 nyyy �

{ } ii qYyP == nqqq £££ �21

{ } { }�
=

====
),(

,),(
yxfz

YyXxPYXfzP

),(kji yxfz =

nkji ,1,, Î ip n,1

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 109

according to . We can write . If

the random variables X and Y are independent, one can write the distribution of Z like this:

For sums on the right side, we can apply the rearrangement inequality [HaLP34] like this:

.
 (63)

401 This formula provides an estimate for the distribution of Z as the output of post-processing
using the random variables X and Y. If the random variables X and Y have the same distribution,

i. e., for all , this formula shows that the collision entropy

of X (or Y) (cf. paragraph 145) is a lower bound for the min-entropy of Z (cf. paragraph 143:

.

402 Assume that the binary-valued random vectors X and Y have length l, and assume that their
realisations are observed from the same stationary random source but at time instants that are
sufficiently far away to exclude dependencies between X and Y. The post-processing algorithm f
is defined as bitwise xor. Then the right-hand side of the inequality (63) equals the maximum
probability of the “zero” vector , and the left-hand side can be substituted by the
maximum of all probabilities of post-processing output:

and finally we get:

.

This formula reduces the estimation of the min-entropy to the estimation of the probability of
the “zero” vector .

5.4.4. Uniformly distributed input data for random mapping s

403 In this example we consider the effect of a random mapping on uniformly distributed input data.

404 More precisely, let , , ,

 and For a uniformly distributed random

),()(jji i
yxfz p= { } { }� ====

i
jii YyXxPYXfzP

i)(,),(p

{ } �
=

×==
n

j
jji i

qpYXfzP
1

)(),(p

{ } ���
===

+- £×==£×
n

k
kk

n

j
jji

n

k
knk qpqpYXfzPqp

i
11

)(
1

1),(p

{ } { } iii pYxPXxP ==== ni ,1Î

{ } { }()2

min 2 2 2
1,

() log max () log ()i
i n

x

H Z p z P X x H X
Î

ÎC

� �
= - ³ - = =� �

� �
�

),0,0(0 �=

{ }{ } { }0),(max
1

2 ==== �
=

zPpYXfzP
n

j
ji

i

{ }ZPpZH
n

i
i =-=�

�

�
�
�

�
-= �

=

0loglog)(2
1

2
2min

0

}1,,1,0{: -= nZn � }1,,1,0{: -= mZm � mn ZZf ®=:

}|)(:|{: 1
)(szfZzV msf =Î= - .||:)()(sfsf Vv =

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 110

variable on , we obtain for each with exactly pre-images.

Hence ()P(()) s
f s

sv
f X V

n
Î = and ()P(())

n n
s

f s
r ss r

sv
f X V

n==

Î = �� , and the corresponding work

factor is given by . If the mapping is selected randomly, i.e., if may be viewed as a

realisation of a uniformly distributed random mapping , we obtain:

with while denotes a -distributed random variable. Further,)(×FE and

)(Pr ×F denote the expectation and the probability with regard to the random mapping ,
Irespectively. In particular, re quantifies the average probability that)(XF has r³ pre-
images. The corresponding work factor equals

where denotes a -distributed random variable.

405 In particular, and . If and are large (the case we are interested

in) and if , the Central Limit Theorem implies

 and .

(For , the Poisson approximation should be more convenient.) Similarly, for a uniformly
distributed random variable U on mZ we obtain the work factor

re meUw
r

=)(. For 1³r the difference of work factors

))
5.0

()
5.1

(())(()(
g

g
g

g +-
F-

+-
F=-

rr
mXFwUw

rr ee

quantifies the ‘distance’ between U and)(XF on the elements of mZ with pre-image size r³

. Linear interpolation in r yields an approximation of the work factor and the

corresponding work factor defect for each parameter)1,0(Îa . More precisely,

X nZ
n
s

zXf ==))(Pr(mZzÎ s

�
=

n

rs
sv f f

F

)1Pr()1(
1

1

)1(

)|)((|Pr

|)))((|1(
)(

))((Pr(:

1

1

1
}{

)(
)(

-³=-��
�

�
��
�

�
-

-
=

-��
�

�
��
�

�
=

=

=

==Î=

--

=

-

==

-

=

-

==

�

��
�

�
�

�

rYpp
s

n

pp
s

n
m

n
s

n

szFs

n

zFsE

n

vsE
VXFEe

sns
n

rs

sns
n

rs

n

sr

Zz
F

n

sr

Zz
sFn

sr

sFF
n

rs
sFFr

m

m

e

e�

m
p

1
= Y),1(pnB -

F

)'Pr()1(|)(|))(()(rYmpp
s

n
mVEXFw sns

n

rs

n

rs
sFFer

³=-��
�

�
��
�

�
== -

==
��

'Y),(pnB

m
n

YE =)'(
m

n
YE

1
)(

-
= n m

1: >>=
m
n

g

)
5.1

()
5.01

(1:
g

g
g

g +-
F=

F-=

rr
er)

5.0
(:))((

g
g +-

F=
r

mXFw
re

mn »

))((XFwa

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 111

)
5.0

())((
g

g a
a

+-
F=

r
mXFw with for while trivially

aa mUw =)(. The difference))(()(XFwUw aa - (‘work factor defect’ for parameter a) is

clearly bounded by .

406 In the context of cryptographic post-processing algorithms we are mainly interested in
parameters n and mthat are powers of two (i.e., ,). The table below provides
exemplary numerical values.

Table 14: Work factor and work factor defect for uniform mappings with equidistributed input

)(Uw
re))(()(XFwUw

rr ee -

 1026

210 1100 0.0099m 0.0092m 0.0008m

 258

 257 m0250.0

)(Uwa))(()(XFwUw aa -))}(()({max ''
)1,0('

XFwUw aa
a

-
Î

 0.4947m

5.5. Examples of online test, tot test, and start-up test

407 In all three examples in this section, we assume that the internal random numbers are stored in a
512-bit FIFO. The FIFO outputs internal random numbers upon external request. The FIFO is
filled up with currently-generated consecutive internal random numbers 1 2, ,...r r at an instant
when there are only between 128 and 256 fresh random bits left. The PTRNG continuously
generates internal random numbers. For the second and third example, we assume that the das-
random numbers are binary-valued, i.e., one random bit is generated per time unit.

5.5.1. An online test of the internal random numbers

408 All internal random numbers that are used to fill up the FIFO have been tested. The internal
random numbers are interpreted as bit strings and segmented into 4-bit words. 2c goodness-of-
fit tests on 128 bits (4-bit words) are applied. The online test fails if the test value exceeds 65.0.
According to ([Kanj95], pp. 69), the test variable is approximately 2c -distributed with 15

degrees of freedom, which gives rise to the significance level 73.8 10-× .

409 If a test fails, i.e., if the null hypothesis (i.e. the internal random bits were generated by an ideal
RNG) is rejected, the PTRNG is shut down and an error message is generated. The error

1

11
-

-

-
-

+-=
rr

r

ee
e

rr
a

a 1-££ rr ee a

))
5,0

()
5,0

((
gg

-
F-Fm

'2nn = '2mm =

g r))((XFw
re

102 m494.0 m481.0 m013.0
102 1025 m506.0 m494.0 m012.0

82 m4875.0 m4627.0 m0248.0
82 m5125.0 m4875.0

g a))((XFwa

102 5.0 m5.0 m4875.0 m0125.0 m0126.0
102 1.0 m1.0 m0053.0 m0126.0
82 5.0 m5.0 m4751.0 m0249.0 m025.0

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 112

message is logged and the PTRNG must be restarted manually. Only two manual restarts are
permitted within the life cycle of the PTRNG.

410 Internal random numbers that are not stored in the FIFO are neither saved nor tested unless they
are needed to complete a sample for the online test. It may be expected that the PTRNG applies
around 1000 online tests per year. For an ideal random number generator, the c2-distribution
function gives rise to a probability of around 4108.3 -× that there will be at least one noise alarm
within a year (cf. to the next example).

411 This online test meets functional requirement PTG.1.3. Whether the test detects a total failure of
the noise source clearly depends on the post-processing algorithm.

5.5.2. A straightforward online test

412 In the preceding example, the internal random numbers were tested, which were stored in the
FIFO or were used to fill up a sample for the online test. In this example, we instead assume that
an online test applies to those das-random numbers that are used to generate the stored internal
random bits or are needed to complete a sample for the online test. Again, a 2c goodness-of-fit
test on 128 bits (4-bit words) is applied, and a test value that exceeds 65.0 causes a noise alarm.
The consequences of a noise alarm are the same as in the first example.

413 We analyse the proposed solution with regard to the requirements of class PTG.2 (also PTG.3),
which are more restrictive than those of PTG.1.

414 As pointed out earlier, the online test should be selected with regard to the stochastic model of
the noise source. Thus, whether the 2c goodness-of-fit test is appropriate depends on the
concrete noise source. This aspect is outside the scope of this example.

415 A noise alarm occurs if a single test gives a value greater than 65.0. This is a very rare event, at
least under the null hypothesis (ideal noise source), which implies independent and uniformly
distributed 4-bit words. However, this approach has two disadvantages that will be described
below.

416 On the one hand, even under the null hypothesis, the test variable is only asymptotically 2c -
distributed with 15 degrees of freedom. More precisely, this is the limit distribution of the test
variable when the sample size tends towards infinity. If the sample size is ‘small’ especially for
large rejection bounds, i.e., for small failure probabilities, the relative error

approxapproxexact ppp /|| - | can be large. Here, exactp denotes the exact rejection probability,

whereas approxp is the approximate rejection probability derived from the 2c distribution. For

example, for the sample size 320 bit (= 80 four-bit words) for the rejection bound 65.0 the
relative error is 10.1 ([Schi01], Sect. 4). We put approxp and not exactp into the denominator,

since the designer of a PTRNG grounds his further considerations on the approximate
probability. For 128 (4-bit words), this ratio should be smaller, but the number of noise alarms
should be considerably greater than is to be expected on the basis of the asymptotic limit
distribution. This might affect functionality aspects, but it is not a security issue. For other
statistical tests, this effect may be converse, resulting in considerably fewer failures than
expected.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 113

417 A second drawback of the proposed online test is that it is hardly possible to estimate the true
rejection probability if the distribution of the das-random numbers deviates from the output of
an ideal RNG (e.g., because of a bias).

418 Whether this online test fulfils the functional requirements PTG.2.3 and PTG.2.4 (equivalently,
PTG.3.3 and PTG.3.4) first depends on whether the 2c goodness-of-fit test is appropriate for
the given noise source. Moreover, it demands analysis of the rejection probabilities for tolerable
and non-tolerable weaknesses of the das-random numbers. As pointed out above, this is
difficult, especially for rare events (large rejection boundaries).

419 These problems are the motivation to propose a more sophisticated approach that is discussed in
the next example.

5.5.3. A more sophisticated online test procedure

420 In this section we discuss a generic approach that covers the online test, tot test, and start-up
test. As in the previous example, the scope of testing is the das-random numbers that are used to
generate the internal random numbers stored in the FIFO or needed to complete a sample for the
online test. For details, the interested reader is referred to [Schi01]. This online test procedure
also is discussed in [AIS31An], Example E.7.

421 The start-up test is performed (a single 2c test over 128 bits (4-bit words)) when the PTRNG is
started. The PTRNG passes the start-up test if the test variable is £ 65.0. This evaluation rule
detects a total breakdown of the noise source and very obvious statistical weaknesses
immediately when the PTRNG is started. The start-up test thus fulfils functional requirement
PTG.2.1 and the first part of functional requirement PTG.2.3 (also PTG.3.1 and PTG.3.3).

422 As explained below, the online test procedure also covers the tot test functionality while the
PTRNG is in operation.

423 First, the type of the so-called “basic test” must be selected. The stochastic model of the noise
source clearly should be taken into account, because an unsuitable basic test may reduce the
effectiveness of the online test procedure considerably; however, this aspect is not in the scope
of this example. For simplicity, we decided on a 2c goodness-of-fit test over 128 bits (4-bit
words) as in the previous examples. We point out that the proposed online test procedure is
generic and transfers almost literally to other basic tests.

424 A test suite is made up of a maximum of 512=N basic tests (here: 512 2c tests). In the

following steps, we will use the notation ,..., 21 CC to refer to the test variables, i.e., random

variables that correspond to the test values of basic tests. In particular,)(: 10 CEH = (i.e. the

expected value of the basic test variable under the null hypothesis) and

jjj CHH bb +-= - 1)1(: for ,...2,1=j with 62-=b , whereby the test variablesjC and jH

are each rounded to 6 binary digits. This allows the calculation of the "history variables"
,..., 21 HH using integer arithmetic. The observed test values and the computed history

variables are denoted with small letters (,..., 21 cc and ,..., 21 hh , respectively). Three evaluation
rules apply for each step Nj ££1 :

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 114

 (i) if 75.26,., 12 >-- jjj ccc , then there is a preliminary noise alarm,

 (ii) if]0.17,0.13[Ïjc , then there is a preliminary noise alarm,

 (iii) if 5.269>jc , then there is a noise alarm.

425 If no preliminary noise alarm occurs within a test suite, a new test suite is started. Each
preliminary noise alarm causes the current test suite to be cancelled and the FIFO to be deleted.
Each preliminary noise alarm is logged. If three consecutive test suites are stopped due to a
preliminary noise alarm, a noise alarm occurs, the PTRNG is shut down, and a corresponding
error message is generated. Note that evaluation rule (iii) covers the tot test functionality as is
discussed below.

426 For demonstration purposes, we assume for simplicity that the digitised noise signals are
realisations of binary-valued independent and identically distributed random variables. The
probability P(1) that a das-random bit assumes the value 1 might depend on the individual
device and might change in the course of time due to aging effects.

427 In a real-world evaluation, an assumption like this (independence assumption) should be the
result of a thorough analysis of the stochastic model and investigation of prototypes. For
instance, the analysis of the stochastic model (cf. e.g., to [KiSc08]) might imply that the random
variables are stationary with rapidly decreasing dependencies, and that the das-random numbers
pass test suite B; moreover, no one-step dependencies were detected.

428 We assume that with regard to the algorithmic post-processing algorithm (which is beyond the
scope of this example) that it is sufficient if P(1) [0.49,0.51]Î . If this probability lies outside
of the interval]525.0,475.0[, the online tests should soon recognise this fact and trigger a
noise alarm.

429 Table 15 shows the probability of a preliminary noise alarm within a test suite and the average
number of noise alarms per year. Here it has been assumed that 1584 basic tests are performed
each day (of which 144 are based on the event of filling up the FIFO).

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 115

Table 15: Probability for a noise alarm within a test suite and the expected number of noise alarms per
year for different distributions of the das-random numbers

P(1) Probability for a noise pre-alarm
within one test suite

Average number of noise alarms per
year

0.500 0.0162 0.0047

0.495 or 0.505 0.0187 0.0072

0.490 or 0.510 0.0292 0.027

0.485 or 0.515 0.0794 0.52

0.480 or 0.520 0.2954 21.1

0.475 or 0.525 0.7670

0.470 or 0.530 0.9912

430 Compared to the online test procedure proposed in the preceding example, the situation is more
favourable.

431 Under the null hypothesis (ideal RNG), 03.0)75.26(»>jCP . Here, the 2c distribution still

has "mass" and the relative error is low.

432 Decision rule (ii), too, does not depend on the occurrence of a single, very rare event but on a
several events that, taken individually, are by no means rare. The small weight factor b ensures
this.

433 If the distribution of the digitised noise sequence deviates from the null hypothesis, the
distribution function of the test variable can be estimated by means of a stochastic simulation.
Here, a pseudo-random number generator is used to generate standard random numbers, i.e.,
pseudo-random numbers that are uniformly distributed on the interval [0,1). Typically, one uses
a linear congruential generator or a linear feedback shift register, since they are very fast and
have good statistical properties, and unpredictability of the pseudo-random numbers is
irrelevant here ([Schi09a], subsection 2.4.3). From the standard random numbers, one computes
a large number of sequences (e.g., 610 of 1284× pseudo-random bits) according to the desired

distribution. To each sequence, the 2c test is applied. For the distributions taken into account
in Table 17, stochastic simulations delivered the following probabilities that the test variable is

75.26> : 0299.0 (null hypothesis), 0303.0 , 0331.0 , 0371.0 , 0416.0 , 0526.0 and 0656.0
(order as in Table 17).

434 Under the above assumptions, the basic test variables ,..., 21 CC can be interpreted as the
realisation of independent random variables. Decision rules (i) and (ii) define a homogeneous
Markov chain on the finite state space

}{}20],0.17,0.13[2,|),2{(66 wÈ££ÎÎ=W -- ikNkik ,

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 116

where w is an absorbing state. The state),(iv is reached if the history variable assumes the

value v and the last 2£i test variables were greater than75.26 . The absorbing state w
corresponds to a preliminary noise alarm being triggered (see also [Schi01]).

435 Depending on the application and on the consequence of a noise alarm the expected number of
noise alarms for the range of permitted probabilities P(1) might be too large. We point out that
by selecting other parameter sets the online test procedure can be made more or less restrictive
(see also [Schi01]).

436 Under the assumption that the 2c test is appropriate for the given noise source, functional
requirement PTG.2.3 (also PTG.3.3) is fulfilled, and also PTG.2.4 and PTG.2.5 (also PTG.3.4
and PTG.3.5).

437 Suppose that a total failure of the noise source results in constant output sequences. If the last
220 bits of a sample are constantly 0 or constantly 1, this implies 5.269³jc , which triggers

a noise alarm due to decision rule (iii). Note that the current basic test may not necessarily
detect a total failure if it occurs later. However, a noise alarm is triggered at the latest by the
subsequent basic test. At this point in time, however, no internal random number has left the
FIFO, which has been used to fill up the FIFO after the total failure occurred. Thus, functional
requirement PTG.2.2 (also PTG.3.2) also is fulfilled.

5.6. Examples of RNG designs

5.6.1. PTRNG with two noisy diodes

Example Basic RNG Design with noisy diodes

438 In this section we discuss an example of a PTRNG (cf. [KiSc08] for details).

439 The random source of the RNG consists of two equal noisy diodes. For example, Zener diodes
have a reverse avalanche effect (depending on diode type 3–4 Volts or about 10 V) and produce
more than 1mV noisy voltage on about 10 MHz. The Flicker Noise in Schottky diodes is
associated with static current flow in both resistive and depletion regions (caused by traps due to
crystal defects and contaminants, which randomly capture and release carriers).

440 Both diodes provide symmetric input to an operational amplifier to amplify the difference of
noise voltages. The output of the operational amplifier is provided to a Schmitt trigger, where
the mean voltage of the amplifier meets the threshold of the Schmitt trigger. The output signal
of the Schmitt trigger consists of zero and one signal of random length. This signal is latched to
the digitised random signal with a clock, which should be at least 20 times slower than the
output signal of the Schmitt trigger.

441 The tot test separately checks the generation of noisy voltage of each diode. The online test shall
check the quality of the digitised noise signal by suitable statistical tests.

442 Figure 9 illustrates the basic design.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 117

Figure 9: Basic design of RNG with noisy diodes

443 The circuit for AC coupling, the negative feedback to the operational amplifier, the stabilization
of the power supply and the temperature compensating effects are not shown in this figure. A
drift of the noisy voltages or the operational amplifier output results in impulses that are too
long or too small, causing a biased digitised noise signals. Therefore, the digitised random
signal shall be passed to a Neumann/Peres unbiasing control. Clearly, long-term aging effects
may be neglected here.

Variant of RNG Design with noise diodes

444 The advanced variant of the basic design outputs the number of Schmitt trigger impulses
(caused by 0-1-crossings) modulo 2 as the digitised noise signal.

445 Figure 10 illustrates the advanced design.

Figure 10: Variant of the basic design of RNG with noisy diodes

clock

tot test online test

Vcc

digitised
noise
signal

+

_

clock

tot test online test

Vcc

digitised
noise
signal

+

_

+

_

+

_

tot test online test

Vcc

clock

digitised
noise
signal

+

_

tot test online test

Vcc

clock

digitised
noise
signal

+

_

+

_

+

_

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 118

446 Each impulse of the Schmitt trigger inverts the signal that is latched by the clock. The quality of
the digitised noise signal depends on the randomness of the numbers of these impulses. Unlike
the basic design described above, it is not relevant whether the intervals between 0-1 and 1-0-
crossings, or between 1-0 and 0-1-crossings, are identically distributed.

We provide some exemplary measurements of a similar design (cf. [KiSc08]).

447 The output of the operational amplifier within time intervals of 1ns gives diagrams like the
following (resolution: 8 bits).

 Difference of noisy voltages of the
operational amplifier (low
amplification)

 Output signal of the operational
amplifier (maximum amplification)

448 The distribution of the time intervals between successive 01-upcrossings may be illustrated by a
histogram or by percentiles of a distribution. (Note that these diagrams belong to different
measurements).

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 119

 This histogram shows the empirical
distribution of the time intervals between
successive 01-upcrossings (in ns).

 This graphic shows the percentiles of the
gamma distribution versus the observed
percentiles of the time intervals between
successive 01-upcrossings (in ns).

449 These measurements also allow calculation of the power spectrum and calculation of the auto-
correlation of the signals.

 The mean power spectrum of the output of
the amplifier (low amplification)

 Autocorrelation of the difference of noise
voltages (maximum amplification)

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 120

450 [KiSc08] develops and analyses a stochastic model that fits to this PTRNG. This stochastic
model allows the estimation of a lower bound for the average entropy per internal random
number. One key observation is that under mild assumptions, the internal random numbers may
be viewed as realisations of a stationary process. In particular, autocovariance and
autocorrelation can be calculated. Interestingly, the same type of stochastic model fits several
other RNG designs, too (the stochastic processes having different distributions, of course). The
interested reader is referred to [KiSc08] for details.

451 The security architecture of this PTRNG should describe and implement protection against
effects on the power consumption and self-tests (cf. self-protection).

Figure 11: Examples of self-protection in PTRNG based on noise diodes

452 Effective online tests should be tailored to the stochastic model of the noise source. Reference
[KiSc08] analyses properties that effective online tests should have.

5.6.2. Examples of DRNGs

Example 39: NIST SP 800-90 DRBG Mechanisms based on Hash Functions

453 NIST Special Publication 800-90 “Recommendation for Random Number Generation Using
Deterministic Random Bit Generators” [NIST800-90] specifies mechanisms for the generation
of random bits using deterministic methods. The methods discussed are either based on hash
functions, block ciphers, or problems from number theory. We give a brief description of NIST
recommended DRNGs and hybrid DRNGs that are based on NIST-approved hash functions and
HMAC. The reader may refer to [NIST800-90] for details.

454 [NIST800-90] comprises a detailed description of the interfaces and the functions of the DRNG.
Figure 12, which is from [NIST800-90], chapter 7, illustrates the generic design of the RBG.
The entropy input and the seed shall be kept secret. The secrecy of this information provides the
basis for the security of the random bit generator (RBG). The entropy input shall at least provide
the amount of entropy requested by the Deterministic Random Bit Generator (DRBG)
mechanism given by the parameter security_strength. Other data fed into the DRNG as
personalisation string, nonce, and additional input may or may not be required to be kept secret

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 121

by a consuming application; however, the security of the RBG itself does not rely on the secrecy
of this information.

455 [NIST800-90], chapter 10.1, defines two mechanisms that are based on the hash functions SHA-
1, SHA-224, SHA-256, SHA-384 and SHA-51243:

- Hash_DRBG using one of these hash functions,

- HMAC_DRBG using one of these hash functions and the HMAC based on these hash
functions.

The hash functions are used directly and in the form of the functions (cf.
[NIST800-90], section 10.4.1) and Hashgen (cf. [NIST800-90], section 10.1.1.4). We denote
the output length of the hash function as hash_outlen, which is 160 for SHA-1 and x for SHA-x
for the other hash functions.

Figure 12: RGB Functional model defined in [NIST800-90]

456 [NIST800-90] describes these DRNGs with parameters depending on the hash function used (cf.
[NIST800-90], Table 2 in section 10.1 for the limitation of these parameters). The parameter
seedlen equals 440 for the hash functions SHA-1, SHA-224, SHA-256 and equals 888 for SHA-

43 Note that since SHA-224 is based on SHA-256, and SHA-384 is based on SHA-512, there is no efficiency

benefit for using SHA-224 or SHA-384.

_Hash df

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 122

384 and SHA-512. Note the length of the entropy input, the personalisation string and the
additional input shall be . The number of requests since last reseeding44 is counted by
reseed_counter45. The reseed_counter is bounded by the parameter reseed_interval, which shall
be . The length of the binary output sequences per request shall be .

457 [NIST800-90] describes the instantiation function, the reseed function and the generate
function of the DRNG. The reseed function and the generate function have the same internal
state but different input lengths, and the reseed function does not generate output. Therefore, it
is easier to use two algorithmic descriptions of the DRNG introduced in section 2.2.3 on page
25:

- the 6-tuple for the “normal operation” using the generate function,
and

- the 4-tuple for the reseeding operation.

A complete model for both operations is also possible by combining the state transition
functions and MN in one more complex function and an empty string output in case of

reseeding. denotes the distribution of the internal state after instantiation or reseeding of the
DRNG.

458 The internal state of the Hash_DRBG consists of a value V that is updated during each call of
the DRNG, a constant C that depends on the seed, and a counter reseed_counter that indicates
the number of requests for output since new entropy input was obtained during instantiation or
reseeding. Both algorithmic descriptions use the same internal state defined as

the set of internal states, where we write , v stands for V, c for C and z for
reseed_counter in [NIST800-90].

459 The instantiation function generates the initial internal state by setting the

initial value of the counter reseed_counter to 1 and calculates the values and using an

entropy input string entropy_input obtained from the source of entropy input, a value nonce as a
time-varying value that has at most a negligible chance of repeating, and an optional
personalization_string (cf. [NIST800-90], section 10.1.1.2). The derivation function

calculates from an input bit string input_string an output bit string requested_bits of
length no_of_bits_to_return by repeated application of the hash function until temp contains at
least no_of_bits_to_return bits, where the initial temp string is empty, as follows:

,

44 According to our definition, it is indeed a seed-update as will be shown later. In this example, we use the

notation from [NIST800-90].
45 More precisely, this counter is set to 1 by the instantiation function and by the reseeding function.

352£

482£ 192£

),,,,,(ApRIS yj

ˆ ˆ(, , ,)AS I pj

j

Ap

S

{ } { } { } 48
0,1 0,1 0,1

seedlen seedlen
S = ´ ´

(, ,)s v c z=

0 0 0 0(, ,)s v s r=

0r 0v 0c

_Hash df

:temp o= : 1counter =

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 123

For i=1 to len do

requested_bits:= Leftmost (no_of_bits_to_return) bits of temp

One denotes the instantiation function using like this:

460 The instantiation function generates internal states with an initial distribution depending on

the input. The minimum entropy and minimum length of entropy input sequence provided for
instantiation are denoted as parameter security_strength in [NIST800-90].

461 The generate function updates the internal state and generates the output of a requested length.
In terms of the algorithmic description it may be described by the 6-tuple
with

- , , is the input alphabet, where , e is the input sequence

used for the state transition function and the output function (denoted as
additional_input in [NIST800-90]) and l the length of the requested output (denoted as
outlen in [NIST800-90]),

- , , the output alphabet is the set of binary sequences of length ,

and

- is the distribution of the internal state after instantiation or reseeding.

462 The DRNG may or may not support additional input for the generate function, the state
transition function and the output function. The additional input may be publicly known or an
entropy input for a hybrid DRNG (section 2.2.3). If the DRNG allows additional input for the
generate function, the state transition function, and the output function, the DRNG uses pre-
computation of an intermediate value of the first part of internal state, as follows:

_ _ _ _
:

_
no of bits to return

len
hash outlen

� �
= � �

� �

: (_ _ _ _ _)temp temp Hash counter no of bits to return inputstring=

: 1counter counter= +

_ (_ , _ _ _ _) : _Hash df input string no of bits to return requested bits=

_Hash df

0 _ (_ _ ,)v Hash df entropy input nonce personalization string seedlen=

0 0_ (0 00 ,)c Hash df x v seedlen=

0 1r =

0p

),,,,,(ApRIS yj

I { }
352

19

0

0,1 1,2
i

i

I
=

= ´� (,)i e l=

R { }
482

0

0,1
i

i

R
=

= � 482£

Ap

v¢

()(0 00) mod 2seedlen
n n n nv v Hash x v e¢= +

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 124

If the DRNG does not support additional input, we set for simplicity of description.

463 Pre-computation prevents malicious control of the internal state and the output through the
additional input if the value v is unknown and makes this control very hard even if the value v is
known, because the hash function is a one-way function.

464 The state transition function calculates the next initial state

 as follows:

465 The output function Hashgen calculates output of length l from input

from the intermediate value as follows:

The function Hashgen generates the binary string output from the value input for a given length
requested_no_of_bits by repeated application of the hash function until temp contains at least as
follows:

,

For i=1 to len do

output:= Leftmost (temp) bits of temp

466 Note that both the part of the state transition function that completes and the output

function are based on a hash function and behave as a random mapping. This provides forward
secrecy as assurance that subsequent (future) values cannot be determined from current or
previous output values.

467 The output function is a cryptographic one-way function with

respect to (observing the output l is obviously known). The value will contain sufficient

entropy to prevent successful guessing. The attacker cannot determine . Because is

prerequisite for calculation of the output, the internal state sn cannot be determined from current
or future output values. The DRNG provides backward secrecy.

n nv v¢=

SIS ®´:j

1 1 1 1(, ,) (, ,)n n n n n n ns v c z v c zj+ + + + ¢= =

()1 (0 02) mod 2seedlen
n n n n nv v Hash x v c z+ ¢ ¢= + + +

1n ns s+ =

1 1n nz z+ = +

RIS ®´:y (,)i e l=
v¢

1 (,) (,)n n nr v l Hashgen l vy+ ¢ ¢= =

:temp o= :data input=

_ _ _requested no of bits
len

outlen
� �= � �� �

: ()temp temp Hash data=

: (1) mod 2seedlendata data= +

(_ _ _ ,) :Hashgen requested no of bits input output=

1nv +

(,) (,)n nv l Hashgen l vy ¢ ¢=

nv¢ nv¢

nv¢ kv¢

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 125

468 The function is a cryptographic one-way function, as well. For

, an attacker can calculate and , but he cannot calculate previous values or if

the internal state and the possible additional inputs are known. The DRNG provides

enhanced backward secrecy.

469 The reseeding function generates a new internal state by setting the

counter reseed_counter to 1 and calculating the new values and using the current

value , an entropy input string entropy_input obtained from the entropy source, and an

optional additional_input (cf. [NIST800-90], section 10.1.1.3). The minimum length of the
entropy input string entropy_input is given by the parameter security_strength.

470 The call of the reseeding function is enforced by

- the consuming application setting the prediction_resistance_flag, and

- the reseed counter reseed_counter when reaching the maximum number of requests
between reseeding reseed_interval.

The reseeding function provides the requested amount of entropy if the entropy input is
independent of the current internal state. If the internal state is compromised, the secrecy of the
internal state is re-established. Therefore, the DRNG ensures enhanced forward secrecy, i.e., the
assurance that subsequent (future) values of a DRNG cannot be determined from the current
internal state, current or previous output values, on demand of the consuming application, or
automatically as configured through the parameter reseed_interval.

471 Compared with the generate function, the reseeding function uses a longer input sequence
(without any length of output), does not use , and no output is generated. Therefore, the

algorithmic description of the reseeding function may be described in the form of the 4-tuple

:

- the input alphabet is ,

,

- the state transition

()1 1,
(, ,)n n n nseedlen

v v c zp j+ ¢=

k n< ks kz kv¢ kv

ns

1 1 1 1(, ,)n n n ns v c r+ + + +=

1nr + 1nv + 1nc +

nv

1 _ (0 01 _ _ ,)n nv Hash df x v entropy input additional input seedlen+ =

1 1_ (0 00 ,)n nc Hash df x v seedlen+ +=

1 1nr + =

nc

ˆ ˆ(, , ,)AS I pj

{ } { }35 35ˆ 0,1 0,1I = ´

(_ , _)i entropy input additional input=

{ } { } { } { } { }48 48ˆ : 0,1 0,1 0,1 0,1 0,1
seedlen seedlen seedlenj ´ ® ´ ´

1 1 1 1 ˆ(, ,) (,)n n n n n ns v c r v ij+ + + += =

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 126

472 The distribution depends on the entropy of the current internal state value , the entropy

input, and on the reseeding function itself. The additional_input might contain some entropy if
it is kept secret, but the security of the DRNG does not depend on this.

Example 40: ANSI X9.17 DRNG

473 The ANSI X9.17 DRNG is defined as follows (cf. [Schn06]): Let denote the triple

DES encryption function with key and plain text , the decryption function

for the key and cipher text , and a secret triple-DES key (112 effective bits), which is
generated when the DRNG is instantiated. Further, denotes time stamps when random

numbers are requested, , and denotes the secret internal state at time (before the

requested random numbers are generated), , . Finally, is the initial

state, and the output at time , , . Each time output is requested, the

following steps are executed:

474 The 6-tuple is defined as:

- set of internal states: , , ,

- publicly known input: , depends on the time base, e.g. for PC typically

= ,

- output alphabet:

- state transition function: ,

 (65)

- output function: ,

 (66)

- distribution of the initial internal state: uniform distribution over .

475 The distribution is not explicitly described in [Schn06], but and shall be secret. The
uniform distribution provides secrets with maximum entropy.

Ap nv

),(yxTDES

x y),(1 zxTDES-

x z k

it

�,2,1=i iz it

{ }641,0Îiz �,2,1=i 1s

ir it �,2,1=i { }641,0=R

),(ii tkTDEST =

),(iii zTkTDESr Å=

),(1 iii rTkTDESz Å=+

(, , , , ,)AS I R pj y

ZKS ´= { }1121,0=K { }641,0=Z

{ }641,0=I I

I 322

{ }641,0=R

SIS ®´:j

1 1(,) (,)

(, (, (,) (, (,))))
i i i i

i i i

k z k z

k TDES k TDES k t TDES k TDES k t z

j+ + = =

= Å Å

RIS ®´:y
)),(,(),(iiii ztkTDESkTDESzkr Å==y

Ap S

Ap k 1s

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 127

476 The internal state contains 176 bits. The internal state of this DRNG meets the necessary
entropy condition according to Table 13 to resist high attack potential, but does not meet the
recommended length of 200 bits. Obviously, for any given k, the state transition function holds
the internal entropy because it is a permutation; i.e., for one gets:

, (67)

477 Assume that it are publicly known inputs or at least easy to guess by observing the DRNG

operation. The strength of forward and backward secrecy appears to require cryptanalysis of the
triple-DES. This DRNG neither ensures enhanced backward secrecy nor enhanced forward
secrecy.

5.6.3. NPTRNG

Example 41: Linux NPTRNG [GuPR06]

478 The Linux operating system includes two RNGs as part of the kernel:

- the non-physical true random number generator /dev/random/

- the non-physical hybrid deterministic random number generator /dev/urandom/

479 Externally-visible (user-space) interfaces (devices) /dev/random/ and /dev/urandom/
are marked grey, while interfaces that are only accessible inside the kernel are displayed green.
Both devices use a common DRNG input_pool and additionally implement separate
DRNGs: /dev/random/, the DRNG blocking_pool, and /dev/urandom/ the
DRNG nonblocking_pool . While there must be sufficient entropy in the input_pool
and the blocking_pool before one can use /dev/random/ , /dev/urandom/ also
generates output when the estimated entropy e’ of the input_pool (and therefore
nonblocking_pool) has reached zero. In other words, /dev/random/ needs the
input_pool to be seeded continuously and it does not output more bytes than the entropy
that has (probably) been harvested by the sources of randomness. This property of
/dev/random/ is defined to be the characteristic of an NPTRNG. In contrast to this feature,
the non-blocking output of random numbers (i.e., regardless of an entropy estimate of the
seeding input) makes the /dev/urandom/ a hybrid DRNG.

480 There are three different registers holding random values: the input_pool, blocking_pool and
nonblocking_pool. Then, entropy is extracted from one of the pools by using extract_buf.
Extract_buf involves a one-way function (SHA-1) that provides the desired output and
simultaneously updates the buffer from which the bytes were read. This “cryptographically
active” function is coloured red.

481 The functional design of the Linux random number generator (Linux-RNG) is shown in the
following figure:

(,)i iT TDES k t=

kkk ii ==+1 iiii TTzkTDESkTDESz ÅÅ= +
--)),(,(1
11

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 128

Figure 13: Functional design of the Linux NPTRNG

482 The Linux-RNG uses different non-physical sources of entropy (green), that are either
dependent on user actions or internal system tasks. Every single event (e.g., keyboard and
mouse actions; hard disk, CD or USB access) is mapped to a specific value that is coded in 32
bits. This “event” is then passed to add_timer_randomness where it is “tagged” with a (96-bit)
timestamp composed of the 64-bit running number of processor cycles and a (32-bit) counter
that is increased every 4 ms. The Linux term for this counter is “jiffies”. The value of this

input_pool
(512 Bytes)

blocking_pool
(128 Bytes)

nonblocking_pool
(128 Bytes)

/
d

e
v

/
r

a
n

d
o

m

/
d

e
v

/
u

r
a

n
d

o
m

random_write

a
d

d
_

i
n

p
u

t
_

r
a

n
d

o
m

n
e

s
s

a
d

d
_

d
i

s
k

_
r

a
n

d
o

m
n

e
s

s

add_timer_randomness

/d
ev

/r
an

do
m

random_read

/d
ev

/u
ra

nd
om

urandom_read

ge
ne

ra
te

_r
an

do
m

_u
ui

d

ge
t_

ra
nd

om
_b

yt
es

get_random_bytes

a
d

d
_

i
n

t
e

r
r

u
p

t
_

r
a

n
d

o
m

n
e

s
s

__add_entropy_words

extract_buf extract_buf

extract_buf extract_buf

__add_entropy_words __add_entropy_words

write_pool

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 129

counter is then used to estimate the entropy that the event carries: add_timer_randomness,
therefore, compares (subtracts) the “jiffies” (i.e., a combination of the number of processor
cycles encoded as 64-bit number and the number of timer interrupts since power-up of the
operating systems) of two consecutive events (tn-tn-1). Moreover a “history” of the 1st, 2nd and
3rd order deltas (where the 2nd order delta is defined to be the previous 1st order delta subtracted
from the current 1st order delta etc.) is saved:

.

483 Using this method, it is possible to detect 1st, 2nd and 3rd order dependencies in the timing of the
events. The smallest delta-value (as an additional security feature, limited to 11) is then set to be
the estimated entropy e’ of the actual word. Note that the data written into the primary entropy
pool is the complete Timestamp concatenated with the event. The four words are:
[cycles LSW] . [cycles MSW] . [jiffies] . [event].

484 One now can show that the entropy is estimated in a very conservative way: first, a maximum of
11 out of 128 bits must carry entropy; and second, the entropy estimate e’ is based on a single
part of the data written to the pool. Its value changes much more slowly than the word that is
supposed to carry the most entropy, namely [cycles LSW]. For example, while “jiffies” is
increased by 1, e.g., a processor clocked at 1.8 GHz performs more than 7.2 million cycles. This
leads to 22 “undefined” bits in the sampled counter.

485 A deep analysis of the Linux-RNG showed that each chunk of data written to the pool (event
plus time stamp) has Min-entropy larger than 9 bit. At the same time, the average of the entropy
estimates e’ by the kernel was below 1 bit.

486 The Linux-RNG of Linux kernel 2.6.21.5 is assessed as an appropriate entropy source [TR-
02102].

{ })(),(),(min 2
1

23
1

2
1 --- -=-=-= nnnnnnnnn ddddddttd

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 130

6. Literature

[AIS20] BSI: Application Notes and Interpretation of the Scheme (AIS) 20 – Functionality
classes and evaluation methodology for deterministic random number generators,
Version 1 (02.12.1999), English translation.
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretatio
nen/ais20e_pdf.pdf?__blob=publicationFile

[AIS20An] W. Schindler: AIS 20: Functionality classes and evaluation methodology for
deterministic random number generators, Version 2.0 (02.12.1999), Mathematical-
technical reference of [AIS20], English translation.
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretatio
nen/ais20e_pdf.pdf?__blob=publicationFile

[AIS31] BSI: Application Notes and Interpretation of the Scheme (AIS) 31 – Functionality
Classes and Evaluation Methodology for Physical Random Number Generators,
Version 1 (25.09.2001), English translation.
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretatio
nen/ais31e_pdf.pdf?__blob=publicationFile

[AIS31An] W. Killmann, W. Schindler: A Proposal for: Functionality Classes and Evaluation
Methodology for True (Physical) Random Number Generators, Version 3.1
(25.09.2001), Mathematical-technical reference of [AIS31], English translation.
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretatio
nen/trngk31e_pdf.pdf?__blob=publicationFile

[AIS2031Stat] Implementation of test procedure A and test procedure B of this document;
https://www.bsi.bund.de/cae/servlet/contentblob/478136/publicationFile/30232/testsu
it_zip.zip

[AIS34] BSI: Application Notes and Interpretation of the Scheme (AIS) 34 – Evaluation
Methodology for CC Assurance Classes for EAL5+, Version 1.4 Draft, 14.08.2008.

[BuLu08] M. Bucci, R. Luzzi: Fully Digital Random Bit Generators for Cryptographic
Applications, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 5,
Issue 3 (2008), pp. 861-875.

[Calu02] C. S. Calude: Information and Randomness, An Algorithmic Perspective, 2nd ed.,
Springer, 2002.

[CFPZ09] C. Chevalier, P.-A. Fouque, D. Pointcheval, S. Zimmer: Optimal Randomness
Extraction from a Diffie-Hellmann Element. In A. Joux (ed.): Advances in
Cryptology – Eurocrypt 2009, Springer, LNC 5479, 2009, pp. 572-589.

[CCV31_1] Common Criteria for Information Technology Security Evaluation, Part 1:
Introduction and General Model, Version 3.1, Revision 3 Final, July 2009, CCMB-
2009-07-001.

[CCV31_2] Common Criteria for Information Technology Security Evaluation, Part 2: Security
Functional Requirements. Version 3.1, Revision 3 Final, July 2009, CCMB-07-002.

[CCV31_3] Common Criteria for Information Technology Security Evaluation, Part 3: Security
Assurance Requirements. Version 3.1, Revision 3 Final, July 2009, CCMB-07-003.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 131

[CEM] Common Methodology for Information Technology Security Evaluation (CEM):
Evaluation Methodology, Version 3.1, Revision 3 Final, July 2009, CCMB-2009-07-
004.

[CCSDIC] Common Criteria Supporting Document, Mandatory Technical Document, The
Application of CC to Integrated Circuits, Version 3.0, Revision 1, March 2009,
CCDB-2009-03-002.

[CoNa98] J.S. Coron and D. Naccache: An Accurate Evaluation of Maurer’s Universal Test, in:
S. Tavares and H. Meijer (eds.): Selected Areas in Cryptography ’98, SAC ’98,
Springer, Lecture Notes in Computer Science, Vol. 1556, Berlin, 1999, pp. 57-71.

[Coro99] J.S. Coron: On the Security of Random Sources, Gemplus Corporate Product R&D
Division, Technical Report IT02-1998; also in: H. Imai and Y. Zheng (eds.): Public
Key Cryptography, Second International Workshop on Practice and Theory in Public
Key Cryptography, PKC’99, Springer, Lecture Notes in Computer Science,Vol.
1560, Berlin, 1999, pp. 29-42.

[Craw05] M.J. Crawley: Statistics: An Introduction using R, John Wiley & Sons Inc., 2005.

[Devr86] L. Devroye: Non-Uniform Random Variate Generation, Springer, Berlin, 1986.

[DoGP07] L. Dorrendorf, Z. Guttermann, B. Pinkas: Cryptanalysis of the Random Number
Generator of the Windows Operating System, November 4, 2007, eprint server of
IACR, http:/eprint.iacr.org/2007/419.pdf.

[DaRo87] W. B. Davenport, Jr., W. L. Root: An Introduction to the Theory of Random Signals
and Noise, IEEE Press, 1987.

[FI140-1] NIST: FIPS PUB 140-1 (January 11, 1994), Security Requirements for
Cryptographic Modules.

[FI140-2] NIST: FIPS PUB 140-2 (1999), Security Requirements for Cryptographic Modules.

[FI186] NIST: FIPS PUB 186-2 (October 2001), Specifications for the Digital Signature
Standard (DSS), with Change Notice 1.

[FI186-3] NIST: FIPS PUB 186-3 (June 2009March 2006 Draft), Specifications for the Digital
Signature Standard (DSS).

[Golo64] S.W. Golomb: Random permutations, Bulletin of the American Mathematical
Society, 1964, Vol. 70, No. 6.

[FlOd89] P. Flajolet, A.M. Odlyzko: Random Mapping Statistics. In: J.-J. Quisquater, J.
Vandevalle (eds.): Advances in Cryptology, EUROCRYPT’89, LNCS, Vol. 434,
Berlin 1990, pp. 329-354.

[GuPR06] Z. Guttermann, B. Pinkas, T. Reinman: Analysis of the Linux Random Number
Generator, The Hebrew University of Jerusalem, March 6, 2006, eprint server of
IACR, http:/eprint.iacr.org/2006/086.pdf.

[HDCM00] Handbook of discrete and combinatorial mathematics, editor-in-chief Kenneth H.
Rosen, CRC Press, 2000.

[HaLP34] G.H. Hardy, J.E. Littlewood, G. Pólya: Inequalities, Cambridge, 1934.

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 132

[Prus06] H. Pruscha: Statistisches Methodenbuch, Verfahren, Fallstudien, Programmcodes,
Springer-Verlag, Berlin, Heidelberg, 2006.

[Intel] B. Jun, P. Kocher: The Intel® Random Number Generator, Cryptography Research,
Inc., White paper prepared for Intel Corporation, April 22, 1999.

[ISO18031] ISO/IEC 18031: Random Bit Generation, November 2005.

[ITSEC] Information Technology Security Evaluation Criteria (ITSEC), Provisional
Harmonised Criteria, Version 1.2, June 1991.

[ITSEM] Information Technology Security Evaluation Manual (ITSEM), Provisional
Harmonised Methodology, Version 1.0, September 1993.

[JIL] Information Technology Security Evaluation Criteria Joint Interpretation Library
(ITSEC JIL), Version 2.0, November 1998.

[JeWa69] G. M. Jenkins, D. G. Watts: Spectral Analysis and its Applications, Holden-Day, San
Francisco, Cambridge, London, Amsterdam, 1969.

[Kanj95] G. K. Kanji: 100 Statistical Tests, Sage Publications, London, 1995.

[Kill06] W. Killmann: Applying the CC V3 ADV class to hardware, presentation at 7th ICCC,
2006.

[KiSc04] W. Killmann, W. Schindler: Evaluation Criteria for Physical Random Number
Generators, presentation at 5th ICCC, 2004.

[KiSc08] W. Killmann, W. Schindler: A Design for a Physical RNG with Robust Entropy
Estimators, in: E. Oswald, P. Rohatgi (eds): Cryptographic Hardware and Embedded
Systems – CHES 2008, Springer, LNCS 5154, 2008, pp. 146-163.

[KSWH98] J. Kelsey, B. Schneier, D. Wagner, C. Hall.: Cryptanalytic Attacks on Pseudorandom
Number Generators. In: S. Vaudenay (ed.): Fast Software Encryption – FSE 1998,
Springer 1998, LNCS, Vol. 1372, Berlin 1998, 168-188. .

[Maur92] U. Maurer: A Universal Statistical Test for Random Bit Generators, Journal of
Cryptology, Vol. 5, No. 2, 1992, pp. 89-105.

[MeOV97] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone: Handbook of applied cryptography,
CRC Press Inc., 1997.

[MSCE06] Microsoft Windows CE Enhanced Cryptographic Provider 5.01.01603, FIPS 140-2
Documentation: Security Policy, Microsoft 6/20/2006, FIPS 140-2, Certificate No.
460.

[Neue04] D. Neuenschwander: Probabilistic and Statistical Methods in Cryptology, An
Introduction to Selected Topics, Springer LNCS 3028, Berlin, 2004.

[PGP] PGP 8.0 for Windows User’s Guide, PGP Corporation, February 2003.

[Plia99] J. O. Pliam: The Disparity between Work and Entropy in Cryptology, February 1,
1999, eprint server of IACR, http://eprint.iacr.org/1998/024.ps.

[RFC4086] D. Eastlake, S. Crocker, J. Schiller: RFC 4086 Randomness Requirements for

A proposal for: Functionality classes for random number generators

18 September 2011 AIS 20 / AIS 31 page 133

Security, June 2005, //tools.ietf.org/html/rfc4086.

[RNGVS] National Institute of Standards and Technology, Information Technology Laboratory,
Computer Security Division: The Random Number Generator Validation System
(RNGVS), January 31, 2005.

[RSA] PKCS#1: RSA Encryption Standard, An RSA Laboratories Technical Note, Version
1.5, November 1, 1993.

[Ruk2000a] A. L. Rukhin: Testing Randomness: A Suite of Statistical Procedures, Department of
Mathematics and Statistics UMBS, Baltimore.

[Ruk2000b] A. L. Rukhin: Approximate Entropy for Testing Randomness, Journal of Applied
Probability, Vol. 37, No. 1 (2000) pp. 88-100.

[SaHe06] L. Sachs, J. Hedderich: Angewandte Statistik: Methodensammlung mit R, Springer-
Verlag, Berlin Heidelberg, 2006.

[Schn96] B. Schneier: Applied Cryptography: Protocols, algorithms and source code in C, 2nd
edition, John Wiley & Sons, Inc., 1996.

[Schi01] W. Schindler: Efficient Online Tests for True Random Number Generators, in: C.K.
Koc, D. Naccache, C. Paar (eds.): Cryptographic Hardware and Embedded Systems –
CHES 2001, Springer, LNCS, Vol. 2162, Berlin, 2001, pp. 103-117.

[Schi03] W. Schindler: A Stochastical Model and Its Analysis for a Physical Random Number
Generator Presented at CHES 2002, in: K.G. Paterson (ed.): Cryptography and
Coding – IMA 2003, Springer, LNCS, Vol. 2898, Berlin, 2003, pp. 276-289.

[Schi09a] W. Schindler: Random Number Generators for Cryptographic Applications, in: C.K.
Koc (ed.): Cryptographic Engineering, Springer, Berlin, 2009, pp. 5-23.

[Schi09b] W. Schindler: Evaluation Criteria for Physical Random Number Generators, in: C.K.
Koc (ed.): Cryptographic Engineering, Springer, Berlin, 2009, pp. 25-54.

[ScKi02] W. Schindler, W. Killmann: Evaluation Criteria for True (Physical) Random Number
Generators Used in Cryptographic Applications, in: B.S. Kaliski Jr., C.K. Koç, C.
Paar (eds.): Cryptographic Hardware and Embedded Systems – CHES 2002,
Springer, LNCS 2523, Berlin, 2003, pp. 431-449.

[SP800-22] A. Rukhin et al.: A statistical test suite for random and pseudorandom number
generators for cryptographic applications, NIST Special Publication 800-22 (with rev
1a, 2010revisions dated May 15, 2001).

[SP800-90] National Institute of Standards and Technology, Information Technology Laboratory,
Computer Security Division: The NIST SP 800-90 Deterministic Random Bit
Generator Validation System (DRBGVS), October 30, 2007.

[TR-02102] BSI – Technische Richtlinie kryptographische Verfahren: Empfehlungen und
Schlüssellängen, TR-02102, http://www.bsi.de/literat/tr/tr02102/BSI-TR-02102.pdf.

