Heads and tails, summer 2015

PROF. DR. JOACHIM VON ZUR GATHEN AND DR. DANIEL LOEBENBERGER

3. Exercise sheet Hand in solutions until Saturday, 02 May 2015, 23:59:59

Exercise 3.1 (Probabilities).

(6 points)

Consider the following generator $g: \mathbb{B}^3 \to \mathbb{B}^5$ and let $(X_1, \dots, X_5) := g(U_3)$.

x	g(x)	x	g(x)
000	11100		00110
	00101		11110
	01011	110	01010
011	10101	111	01101

- (i) Compute the distribution of the projection on the second to fourth bit, 3 thus of (X_2, X_3, X_4) .
- (ii) Compute a table of the probabilities $\operatorname{prob}(b \stackrel{\text{\tiny{de}}}{\longleftarrow} X_4(y))$ for all possible initial sections $y \in \mathbb{B}^3$ and all $b \in \mathbb{B}$.

Exercise 3.2 (Distinguishers and predictors).

(8+1 points)

2

We consider $f: \mathbb{B}^3 \to \mathbb{B}^6$ from the lecture, and a circuit \mathcal{P} with the following specification. It takes as input $y \in \mathbb{B}^4$ and returns a random bit if w(y) = 2, and otherwise minority(y).

- (i) Determine a Boolean circuit with which \mathcal{P} can be implemented.
- (ii) Determine the prediction power of \mathcal{P} as predictor for the fifth bit of $f(U_3)$.
- (iii) Describe the resulting distinguisher between $f(U_3)$ and U_6 , and determine its distinguishing power.
- (iv) Compare to the predictors and distinguishers presented in the lecture. 2

Exercise 3.3 (Distinguishers and predictors).

(10 points)

We are given the following generator $g: \mathbb{B}^3 \to \mathbb{B}^6$:

\boldsymbol{x}	g(x)
000	001100
001	001110
010	010101
011	011011
100	101000
101	100101
110	110010
111	110011

The algorithm \mathcal{A} answers 1 if and only if at most four bits are 1, and 0 otherwise. The algorithm \mathcal{P} returns the second bit.

- [3] (i) Show: \mathcal{A} is a $\frac{7}{64}$ -distinguisher between the output distribution $X=g(U_3)$ of the generator and the uniform distribution U_6 on 6 bits.
- (ii) Show: \mathcal{P} is a $\frac{1}{4}$ -predictor for the sixth bit under X.

4

(iii) Find a predictor of higher quality and compute its prediction power.