
The art of cryptography: Heads and tails –

Cryptographic random generation

summer 2015

The Nisan-Wigderson generator

Prof. Dr. Joachim von zur Gathen

CoseC b
-i
tComputer

SeCurity

Definition. Let k, n, s, and t be integers. A (k, n, s, t)-design D
is a sequence D = (S1, . . . , Sn) of subsets of {1, . . . , k} such that

for all i, j ≤ n we have

i. #Si = s,

ii. #(Si ∩ Sj) ≤ t if i 6= j.

6/8

Example. We take k = 9, n = 12, s = 3, and t = 1, and arrange

the nine elements of {1, . . . , 9} in a 3× 3 square:

1 2 3

4 5 6

7 8 9

.

• • •

� � �

� � �

�

�

�

�

�

�

•

•

•

�

�

�

•

•

•

�

�

� •

•

•

�

�

�

�

�

�

Thus S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {7, 8, 9}, S4 = {1, 5, 9},
S5 = {3, 4, 8}, S6 = {2, 6, 7}, S7 = {1, 6, 8}, S8 = {2, 4, 9},
S9 = {3, 5, 7}, S10 = {1, 4, 7}, S11 = {2, 5, 8}, and
S12 = {3, 6, 9}.
Now D = {S1, . . . , S12} is an (9, 12, 3, 1)-design as one easily

verifies. As an example, S1 ∩ S5 = {3} has only one element.

5/8

If D is a (k, n, s, t)-design as above and f : Bs −→ B a Boolean

function, we obtain a Boolean function fD : Bk −→ B
n by

evaluating f at the subsets of the bits of x given by S1, . . . , Sn.

More specifically, if x ∈ B
k and Si = {v1, . . . , vs}, with

1 ≤ v1 < v2 < · · · < vs ≤ k, then the ith bit of fD(x) is
f(xv1 , . . . , xvs).

4/8

Example. We consider the parity function f : B3 −→ B, so that

f(x1, x2, x3) = x1 ⊕ x2 ⊕ x3 is the sum of x1, x2, and x3 modulo

2. With the design from above, the value of fD : B9 −→ B
12 at

x = 011110001 ∈ B
9 is

fD





0 0 1

1 1 0

0 1 1



 = 001001010100.

For example, the second of the twelve values is computed as

fD(x)2 = f(x4, x5, x6) = f(110) = 1⊕ 1⊕ 0 = 0.

3/8

Theorem. Let k, n, s be positive integers, s ≥ 2,
t = ⌊logs n⌋ − 1, f : Bs −→ B with hardness at least 2n2, and D
an (k, n, s, t)-design. Then fD : Bk −→ B

n is an (n−1, n)-resilient
pseudorandom generator.

2/8

1/2 + ε ≤ ρP(X)

=
∑

y∈Bi−1

prob{y ←−− (X1, . . . ,Xi−1)} · prob{P(y)←−− Xi(y)}

=
∑

x′∈Bs,x′′∈Bk−s

y=fD(x′,x′′)1...i−1∈B
i−1

prob{x′ ←−− Us} · prob{x
′′ ←−− Uk−s}

· prob{f(x′)←−− P(y)}

= 2−(k−s)
∑

x′′∈Bk−s

r(x′′),

where fD(x
′, x′′)1...i−1 stands for

(fD(x
′, x′′)1, . . . , fD(x

′, x′′)i−1) ∈ B
i−1, and

r(x′′) = 2−s
∑

x′∈Bs

y=fD(x′,x′′)1...i−1

prob{f(x′)←−− P(y)}.

1/8

Algorithm. Circuit A that approximates f .

Input: x′ = (x1, . . . , xs) ∈ B
s.

Output: 0 or 1.

1. For j = 1, . . . , i− 1 do step 2.

2. yj ←− fD(x
′, z)j , with z ∈ B

k−s satisfying ??.

3. Return P(y1. . . . , yi−1).

0/8

