The art of cryptography: Heads and tails Cryptographic random generation summer 2015

The Nisan-Wigderson generator

Prof. Dr. Joachim von zur Gathen

Definition. Let $k, n, s$, and $t$ be integers. A $(k, n, s, t)$-design $D$ is a sequence $D=\left(S_{1}, \ldots, S_{n}\right)$ of subsets of $\{1, \ldots, k\}$ such that for all $i, j \leq n$ we have
i. $\# S_{i}=s$,
ii. $\#\left(S_{i} \cap S_{j}\right) \leq t$ if $i \neq j$.

Example. We take $k=9, n=12, s=3$, and $t=1$, and arrange the nine elements of $\{1, \ldots, 9\}$ in a $3 \times 3$ square:

| 7 | 8 | 9 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 1 | 2 | 3 |



Thus $S_{1}=\{1,2,3\}, S_{2}=\{4,5,6\}, S_{3}=\{7,8,9\}, S_{4}=\{1,5,9\}$,
$S_{5}=\{3,4,8\}, S_{6}=\{2,6,7\}, S_{7}=\{1,6,8\}, S_{8}=\{2,4,9\}$,
$S_{9}=\{3,5,7\}, S_{10}=\{1,4,7\}, S_{11}=\{2,5,8\}$, and
$S_{12}=\{3,6,9\}$.
Now $D=\left\{S_{1}, \ldots, S_{12}\right\}$ is an ( $9,12,3,1$ )-design as one easily verifies. As an example, $S_{1} \cap S_{5}=\{3\}$ has only one element.

If $D$ is a $(k, n, s, t)$-design as above and $f: \mathbb{B}^{s} \longrightarrow \mathbb{B}$ a Boolean function, we obtain a Boolean function $f_{D}: \mathbb{B}^{k} \longrightarrow \mathbb{B}^{n}$ by evaluating $f$ at the subsets of the bits of $x$ given by $S_{1}, \ldots, S_{n}$. More specifically, if $x \in \mathbb{B}^{k}$ and $S_{i}=\left\{v_{1}, \ldots, v_{s}\right\}$, with $1 \leq v_{1}<v_{2}<\cdots<v_{s} \leq k$, then the $i$ th bit of $f_{D}(x)$ is $f\left(x_{v_{1}}, \ldots, x_{v_{s}}\right)$.

Example. We consider the parity function $f: \mathbb{B}^{3} \longrightarrow \mathbb{B}$, so that $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \oplus x_{2} \oplus x_{3}$ is the sum of $x_{1}, x_{2}$, and $x_{3}$ modulo 2. With the design from above, the value of $f_{D}: \mathbb{B}^{9} \longrightarrow \mathbb{B}^{12}$ at $x=011110001 \in \mathbb{B}^{9}$ is

$$
f_{D}\left(\begin{array}{|l|l|l|}
\hline 0 & 0 & 1 \\
\hline 1 & 1 & 0 \\
\hline 0 & 1 & 1 \\
\hline
\end{array}\right)=001001010100
$$

For example, the second of the twelve values is computed as $f_{D}(x)_{2}=f\left(x_{4}, x_{5}, x_{6}\right)=f(110)=1 \oplus 1 \oplus 0=0$.

Theorem. Let $k, n, s$ be positive integers, $s \geq 2$, $t=\left\lfloor\log _{s} n\right\rfloor-1, f: \mathbb{B}^{s} \longrightarrow \mathbb{B}$ with hardness at least $2 n^{2}$, and $D$ an $(k, n, s, t)$-design. Then $f_{D}: \mathbb{B}^{k} \longrightarrow \mathbb{B}^{n}$ is an $\left(n^{-1}, n\right)$-resilient pseudorandom generator.

$$
\begin{aligned}
& 1 / 2+\varepsilon \leq \rho_{\mathcal{P}}(X) \\
&=\left.\sum_{y \in \mathbb{B}^{i-1}} \operatorname{prob}\left\{y \longleftarrow X_{1}, \ldots, X_{i-1}\right)\right\} \cdot \operatorname{prob}\left\{\mathcal{P}(y) \longleftarrow X_{i}(y)\right\} \\
&=\sum_{\substack{x^{\prime} \in \mathbb{B}^{s}, x^{\prime \prime} \in \mathbb{B}^{k-s} \\
y=f_{D}\left(x^{\prime}, x^{\prime \prime}\right)_{1 \ldots i-1} \in \mathbb{B}^{i-1}}} \operatorname{prob}\left\{x^{\prime} \longleftarrow U_{s}\right\} \cdot \operatorname{prob}\left\{x^{\prime \prime} \longleftarrow U_{k-s}\right\} \\
&= \cdot \operatorname{2rob}\left\{f\left(x^{\prime}\right) \longleftarrow \mathcal{P}(y)\right\}
\end{aligned}
$$

where $f_{D}\left(x^{\prime}, x^{\prime \prime}\right)_{1 \ldots i-1}$ stands for
$\left(f_{D}\left(x^{\prime}, x^{\prime \prime}\right)_{1}, \ldots, f_{D}\left(x^{\prime}, x^{\prime \prime}\right)_{i-1}\right) \in \mathbb{B}^{i-1}$, and

$$
r\left(x^{\prime \prime}\right)=2^{-s} \sum_{\substack{x^{\prime} \in \mathbb{B}^{s} \\ y=f_{D}\left(x^{\prime}, x^{\prime \prime}\right)_{1 \ldots i-1}}} \operatorname{prob}\left\{f\left(x^{\prime}\right) \longleftarrow \mathcal{P}(y)\right\} .
$$

Algorithm. Circuit $\mathcal{A}$ that approximates $f$.
Input: $x^{\prime}=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{B}^{s}$.
Output: 0 or 1 .

1. For $j=1, \ldots, i-1$ do step 2 .
2. $y_{j} \longleftarrow f_{D}\left(x^{\prime}, z\right)_{j}$, with $z \in \mathbb{B}^{k-s}$ satisfying ??.
3. Return $\mathcal{P}\left(y_{1} \ldots, y_{i-1}\right)$.
