Cryptography, winter 2015/16

MICHAEL NÜSKEN, SIMON SCHNEIDER

4. Exercise sheet Hand in solutions until Saturday, 28 November 2015, 12:00

Exercise 4.1 (OW-KOA).

(10 points)

One-wayness game G^{OW}.

- 1. Prepare a key $k \leftarrow \text{KeyGen}(1^{\kappa})$ in \mathcal{K} .
- 2. Choose a plaintext $m \xleftarrow{\mathfrak{P}} \mathcal{M}$ uniformly random.
- 3. Prepare a *one-time* oracle $\mathcal{O}_{\text{Test}}$ that when called with no input the oracle returns $c \leftarrow \text{Enc}_k(m)$.
- 4. Call the attacker \mathcal{A} with input 1^{κ} and the oracle $\mathcal{O}_{\text{Test}}$. Await a guess $m' \in \mathcal{M}$.
- 5. If m = m' then ACCEPT else **REJECT**.
- (i) Determine the success probability of the guessing attacker $\widetilde{\mathcal{A}}$ that merely 4 picks $m' \xleftarrow{@} \mathcal{M}$ uniformly random.
- (ii) Prove that every indistinguishable encryption scheme is also one-way $\boxed{6}$ secure, ie. each probabilistic polynomial-time attacker has at most a negligible advantage in winning the game G^{OW} .

Exercise 4.2 (Negligible or significant?).

(4 points)

4

Decide which of the following functions are negligible or significant.

f	$\frac{1}{\sqrt{\log_2 n}}$	$2^{-\sin n \cdot \log_2 n}$	$n^{3}2^{-n}$	$\frac{\log_2 n}{n^4}$	2^{-n^2}	$2^{-\frac{1}{n}}$	$2^{-\frac{\log_2 n}{\log_2 \log_2 n}}$	$2^{-\frac{\log_2 n}{\sin n}}$
negligible?								
significant?								

Exercise 4.3 (Amplification — or: A little bit better than guessing is enough). (3+11 points)

Think of a boolean variable T and an algorithm A with output A and a probability slightly better than guessing to determine the value of T, ie.

$$p = \text{prob}(A = T) > \frac{1}{2}.$$

Imagine a new algorithm \mathcal{B} which calls \mathcal{A} independently m times and outputs B as the majority of the \mathcal{A} s — returning failure in the event of a draw.

(i) Compute for m = 3 the probability

$$p_3 = \operatorname{prob}\left(B = T\right)$$

that *B* succeeds.

(ii) Prove that

3

+4

+3

+4

$$\operatorname{prob}(B=T) \ge \sum_{m/2 < i \le m} \binom{m}{i} p^i (1-p)^{m-i}$$

and give a simple —but still useful— lower bound for the sum. *Hint*: Chernoff.

- (iii) How many repetitions, *m*, do you need for p = 0.6, 0.7, 0.8 in order to guarantee prob (B = T) > 0.9?
- (iv) Let $p = \frac{1}{2} + \frac{1}{n}$. Determine a number of repetitions such that

prob
$$(B = T) > 1 - e^{-c\pi}$$

for some constant c > 0.