Cryptography, winter 2015/16

Michael NÜSKEn, Simon Schneider

4. Exercise sheet
 Hand in solutions until Saturday, 28 November 2015, 12:00

Exercise 4.1 (OW-KOA).
One-wayness game $G^{\mathbf{o w}}$.

1. Prepare a key $k \leftarrow \operatorname{KeyGen}\left(1^{\kappa}\right)$ in \mathcal{K}.
2. Choose a plaintext $m<\mathcal{M}$ uniformly random.
3. Prepare a one-time oracle $\mathcal{O}_{\text {Test }}$ that when called with no input the oracle returns $c \leftarrow \operatorname{Enc}_{k}(m)$.
4. Call the attacker \mathcal{A} with input 1^{κ} and the oracle $\mathcal{O}_{\text {Test }}$. Await a guess $m^{\prime} \in$ M.
5. If $m=m^{\prime}$ then ACCEPT else REJECT .
(i) Determine the success probability of the guessing attacker $\widetilde{\mathcal{A}}$ that merely picks $m^{\prime} \longleftarrow \mathcal{M}$ uniformly random.
(ii) Prove that every indistinguishable encryption scheme is also one-way secure, ie. each probabilistic polynomial-time attacker has at most a negligible advantage in winning the game G^{OW}.

Exercise 4.2 (Negligible or significant?).
Decide which of the following functions are negligible or significant.

f	$\frac{1}{\sqrt{\log _{2} n}}$	$2^{-\sin n \cdot \log _{2} n}$	$n^{3} 2^{-n}$	$\frac{\log _{2} n}{n^{4}}$	$2^{-n^{2}}$	$2^{-\frac{1}{n}}$	$2^{-\frac{\log _{2} n}{\log _{2} \log _{2} n}}$	$2^{-\frac{\log _{2} n}{\sin n}}$
negligible?								
significant?								

Exercise 4.3 (Amplification - or: A little bit better than guessing is enough).

Think of a boolean variable T and an algorithm \mathcal{A} with output A and a probability slightly better than guessing to determine the value of T, ie.

$$
p=\operatorname{prob}(A=T)>\frac{1}{2}
$$

Imagine a new algorithm \mathcal{B} which calls \mathcal{A} independently m times and outputs B as the majority of the $\mathcal{A s}$ - returning failure in the event of a draw.
(i) Compute for $m=3$ the probability

$$
p_{3}=\operatorname{prob}(B=T)
$$

that B succeeds.
(ii) Prove that

$$
\operatorname{prob}(B=T) \geq \sum_{m / 2<i \leq m}\binom{m}{i} p^{i}(1-p)^{m-i}
$$

and give a simple -but still useful- lower bound for the sum.
Hint: Chernoff.
(iii) How many repetitions, m, do you need for $p=0.6,0.7,0.8$ in order to guarantee $\operatorname{prob}(B=T)>0.9$?
(iv) Let $p=\frac{1}{2}+\frac{1}{n}$. Determine a number of repetitions such that

$$
\operatorname{prob}(B=T)>1-e^{-c n}
$$

for some constant $c>0$.

