Cryptography, winter 2015/16

MICHAEL NÜSKEN, SIMON SCHNEIDER

5. Exercise sheet Hand in solutions until Saturday, 5 December 2015, 12:00

Exercise 5.1 (A toy generator).

(8 points)

Consider the (one-size) generator given by the following table:

G(s)
000000
010001
111001
101110
010111
101101
110011
010100

- (i) Determine the advantage of the distinguisher that on input w returns whether bit₀ w equals bit₂ w.
- (ii) Construct a distinguisher with advantage $\frac{1}{2}$.

5

Exercise 5.2 (Game definition for pseudorandomness).

(8+4 points)

Show that the definition for pseudorandomness coincides with the game-based 8+4

Definition. A generator is a pseudorandom generator iff $\ell(\kappa) > \kappa$ and

$$\operatorname{adv}_G^{PRG}(\mathcal{D}) = 2 \left| \operatorname{prob} \left(G^{\operatorname{PRG}}(\mathcal{D}) = ACCEPT \right) - \frac{1}{2} \right|$$

is negligible with the game

Game G^{PRG} .

- 1. Pick $s \in \{0,1\}^{\kappa}, w_0 \leftarrow G(s)$.
- 2. Pick $r \in \{0,1\}^{\ell(\kappa)}$, $w_1 \leftarrow r$. 3. Choose $h^{\text{PRG}} \in \{0,1\}$.

- 4. Call \mathcal{D} with w_h and await $h'^{,PRG}$. 5. If $h^{PRG} = h'^{,PRG}$ then ACCEPT else REJECT.

Exercise 5.3 (Yao, simple).

(0+4 points)

+4 Write down the proof for the

Theorem. If there is a predictor \mathcal{P} for a generator G with advantage

$$\begin{split} \mathsf{adv}_{G^{\mathsf{predict}}}(\mathcal{P}) = \big| \operatorname{prob} \left(\mathcal{P}(G(s)[1..(i-1)]) = G(s)[i] \right) \\ - \operatorname{prob} \left(\mathcal{P}(r[1..(i-1)]) = r[i] \right) \end{split}$$

then there is a distinguisher \mathcal{D} with the same advantage.