7. Exercise sheet

Hand in solutions until Saturday, 19 December 2015, 12:00

Exercise 7.1 (PRF ⇒ PRG). (4+4 points)

Let \(F: \{0,1\}^\kappa \to \{\{0,1\}^\kappa \to \{0,1\}^\kappa\} \), \(k \mapsto F_k \) be a pseudorandom function. Fix \(w_0, w_1, w_2 \in \{0,1\}^\kappa \). Define \(G(s) := F_s(w_0)|F_s(w_1)|F_s(w_2) \).

Prove that \(G \) is a pseudorandom generator.

Exercise 7.2 (IND-CPA?). (12 points)

Let \(F \) be a pseudorandom function and \(G \) a pseudorandom generator with expansion factor \(\ell(\kappa) = \kappa + 1 \). For each of the following encryption schemes, classify the scheme is insecure, IND-POA secure (but not IND-CPA) or IND-CPA secure. In each case, the shared key \(k \) is chosen uniformly random, \(k \in \{0,1\}^\kappa \).

(i) To encrypt \(m \in \{0,1\}^{2\kappa + 2} \) send \(m \oplus (G(k)|G(k + 1)) \).

(ii) To encrypt \(m \in \{0,1\}^{\kappa + 1} \) choose a random \(r \in \{0,1\}^\kappa \) and send \([r, G(r) \oplus m] \).

(iii) To encrypt \(m \in \{0,1\}^\kappa \) send \(m \oplus F_k(0^\kappa) \).

(iv) To encrypt \(m \in \{0,1\}^{2\kappa} \) choose a random \(r \in \{0,1\}^\kappa \) and send \([r, m \oplus (F_k(r)|F_k(r + 1))] \).

Even if not mentioned explicitly: any statement needs a proof.