Cryptography, winter 2015/16

MICHAEL NÜSKEN, SIMON SCHNEIDER

7. Exercise sheet Hand in solutions until Saturday, 19 December 2015, 12:00

Let $F: \{0,1\}^{\kappa} \to \{\{0,1\}^{\kappa} \to \{0,1\}^{\kappa}\}, \ k \mapsto F_k$ be a pseudorandom function. 4+4 Fix $w_0, w_1, w_2 \in \{0,1\}^{\kappa}$. Define $G(s) := F_s(w_0)|F_s(w_1)|F_s(w_2)$.

(4+4 points)

Prove that G is a pseudorandom generator.

Exercise 7.1 (PRF \Rightarrow PRG).

Exercise 7.2 (IND-CPA?). (12 points)

Let F be a pseudorandom function and G a pseudorandom generator with expansion factor $\ell(\kappa) = \kappa + 1$. For each of the following encryption schemes, classify the scheme is insecure, IND-POA secure (but not IND-CPA) or IND-CPA secure. In each case, the shared key k is chosen unformly random, $k \in \{0,1\}^{\kappa}$.

- (i) To encrypt $m \in \{0,1\}^{2\kappa+2}$ send $m \oplus (G(k)|G(k+1))$.
- (ii) To encrypt $m \in \{0,1\}^{\kappa+1}$ choose a random $r \stackrel{\text{\tiny 4}}{\longleftarrow} \{0,1\}^{\kappa}$ and send $[r,G(r)\oplus m]$.
- (iii) To encrypt $m \in \{0,1\}^{\kappa}$ send $m \oplus F_k(0^{\kappa})$.
- (iv) To encrypt $m \in \{0, 1\}^{2\kappa}$ choose a random $r \stackrel{\text{\tiny def}}{\longleftarrow} \{0, 1\}^{\kappa}$ and send $[r, m \oplus (F_k(r)|F_k(r+1))]$.

Even if not mentioned explicitly: any statement needs a proof.