
Cryptography
Winter term 2015/2016

Michael Nüsken

Bonn-Aachen International Center for Information Technology

2 November 2015 – 10 March 2016

c©2015–2016 Michael Nüsken

Global Overview

Organizational
Introduction
Perfectly Secret Encryption

Symmetric-Key Cryptography
Symmetric-Key Encryption and Pseudorandomness, I
Practical Constructions of Block Ciphers
Symmetric-Key Encryption and Pseudorandomness, II
MACs and Collision-Resistant Hash Functions

Public-Key Cryptography
Symmetric-Key Management and Public-Key Revolution
Public-Key Encryption I
Number Theory
Factoring and Computing Discrete Logarithms
Public-Key Encryption, II
*Additional Public-Key Encryption Schemes
Digital Signature Schemes
*Public-Key Cryptosystems in the Random Oracle Model

1+236

Section 1 Overview

Organizational
Webpage & mailing list
Time & place
Hand-in & exam

Introduction

Perfectly Secret Encryption

(2015-11-02) 2+235

Organizational:
Webpage & mailing list

Course page

https://cosec.bit.uni-bonn.de/students/teaching/15ws/15ws-crypto/

Mailing list for discussions

15ws-crypto@lists.bit.uni-bonn.de

Subscribe today!

(2015-11-02) 3+234

https://cosec.bit.uni-bonn.de/students/teaching/15ws/15ws-crypto/
15ws-crypto@lists.bit.uni-bonn.de

Organizational:
Time & place

Lectures

◮ Monday, 1245-1415 sharp, b-it bitmax.

◮ Thursday, 1215-1345 sharp, b-it bitmax.

Tutorial

◮ Monday, 1430-1600 sharp, b-it bitmax.

(2015-11-02) 4+233

Organizational:
Hand-in & exam

Hand-ins

◮ Out: Typically, Monday, 1800.

◮ In: Friday, 2359.

Bonus

◮ ≥ 50%: Admitted to the
exam.

◮ ≥ 70%: One third bonus.

◮ ≥ 90%: Two third bonus.

Final exam

◮ 15 March 2016.

◮ ≥ 50% of all points
necessary to pass.

◮ If you pass, we apply the
bonus.

(2015-11-02) 5+232

Section 2 Overview

Organizational

Introduction
Historical examples

Cesar’s cipher
Shift cipher
Monoalphabetic substitution
The unbreakable cipher
Conclusions

Kerckhoffs’ principle
Black-box view of encryption
Basic principles of modern cryptography
Attack scenarios

Perfectly Secret Encryption

(2015-11-02) 6+231

Introduction:
Historical examples

Cesar’s cipher

Replace each letter with its third successor: a becomes D, b
becomes E, . . . Thus:

forest

IRUHVW

In modern language it’s only a code.

(2015-11-02) 7+230

Introduction:
Historical examples

Shift cipher

Replace each letter with its k-th successor.
For example with k = 2:

attacker

CVVCEMGT
encrypt decrypt

But we only have 26 keys: {0, 1, 2, . . . , 25} = N<26.
Brute force1 means: try all keys. That’s done fast here.

1Brute force is no solution.
(2015-11-02) 8+229

Introduction:
Historical examples

Monoalphabetic substitution

Instead of shifting the alphabet, we can permute it completely. Eg.
we might choose the key:

abcdefghijklmnopqrstuvwxyz

DYLRNPHKSJIZEVUXFGAOMBCTQW

To encrypt or decrypt is easy:

attacker

DOODLING
encrypt decrypt

(2015-11-02) 9+228

Introduction:
Historical examples

Monoalphabetic substitution

Now we have 26! keys.2 That’s about 288.4 .

For comparison: one 4 Ghz CPU kernel runs 256.8 cycles per year
or 290.5 cycles since big bang3. So brute force would take

231.6 years = 0.23 ages of the universe

on a single such CPU kernel. Or one million such CPUs run for
3197. years. So, brute force is out of reach.

226! = 403 291 461 126 605 635 584 000 000.
3The age of the universe is (13.799 ± 0.021) · 109 years (=261. s) acc.to. . .

(2015-11-02) 10+227

Introduction:
Historical examples

Monoalphabetic substitution

Easy to break: frequency analysis.
In a typical English text the letters have the following frequencies:

0

10 8
.2

%

1
.5

% 2
.8

% 4
.2

%

1
2
.7

%

2
.2

%

2
.0

%

6
.1

%

7
.0

%

0
.1

%

0
.8

%

4
.0

%

2
.4

%

6
.7

%

7
.5

%

1
.9

%

0
.1

%

6
.0

%

6
.3

%

9
.0

%

2
.8

%

1
.0

% 2
.4

%

2
.0

%

0
.1

%

0
.1

%

This translates to frequencies of the ciphertext letters: The most frequent
ciphertext letter corresponds most probably to the plaintext letter e. The
second most. . . After a few steps the remaining letters follow by considering
short words like the.

(2015-11-02) 11+226

Introduction:
Historical examples

The unbreakable cipher

(Alberti ∼1467, Bellaso 1553, Vigenère ≈1850)

Aka. Vigenère cipher, polyalphabetic shift, . . .

Pick a word as key, say CRYPTO. Now, encrypt as follows:

useakeywordsaycryptotoencrypttheplaintext. . .
CRYPTOCRYPTOCRYPTOCRYPTOCRYPTOCRYPTOCRYPT. . .
WJCPDSANMGWGCPAGRDVFRDXBEIWEMHJVNATWPKCMM. . .

For each letter use the shift cipher according to the corresponding
letter from the key, where A = 0, B = 1, . . . , Z = 25.

Already, for an alphabet of size 26 and key length of up to twenty
letters there are 294.1 keys.

Still we can break it.
(2015-11-02) 12+225

Introduction:
Historical examples

Kasiski attack (1863)

If the text is long enough, find repeated patterns of three, four or
more letters. Consider the distances. Typically, these patterns are
the encryption of the same plaintext pattern, like the or of.

ifthetext...the...the...the...the...the. . .
CRYPTOCRY...RYP...TOC...YPT...OCR...YPT. . .
KWRWXHGOR...KFT...MVG...RWX...HJV...RWX. . .
..!!!.......???...???...!!!...???...!!!

3 111 153

The distances are 108 and 42. Their greatest common divisor is 6.
The key word CRYPTO has 6 letters. So that is the key length here.

(2015-11-02) 13+224

Introduction:
Historical examples

Breaking knowing the key length
Once we know the key length κ, we split in groups of κ letters and
then analyze the first letter of the groups, then the second and so
on. These are generated by a shift cipher. So for example

KWRWXH GORXLZ QEETGC WXFUBB FICEXO VVBETH VVPCLC

HKFGXS HFSGHF OFPTES VKCGLQ QEQXWS TKFTWW UKYCVS

UKWEBQ CCJNMV GJCETH VVPCLO TVRWXS PTPNIH KFLDYH

JVQPFS RCYXGH GORETH VVPCEW MVRWXC TFD

The second letters are

WOEXIVVKFFKEKKKCJVVTFVCOVVF

The letter V has the largest frequency 7
27 = 26. %. So it should be

the e and thus the key letter is R.
Continuing we should eventually find the key word CRYPTO.
(Well, we find {R CP} R {LM YB} {A Y CPST} T {D O}.)

(2015-11-09) 14+223

Introduction:
Historical examples

Observation

Given the distribution p of letters in English we find that

∑

i∈{a,...,z}
p2i ≈ 0.065,

where pi is the frequency of the letter i according to the
distribution above.
For a random text however we would see

∑

i∈{a,...,z}

(
1

26

)2

= 0.038 .

(2015-11-09) 15+222

Introduction:
Historical examples

Better analysis of shift cipher

We can use that to find the best fitting key instead of ‘only’
looking at the most frequent letter(s).
Let qi be the frequency of letter i in the ciphertext.
Slang: Consider the distribution q of the ciphertext.
Then we expect

Ik :=
∑

i∈{A,...,Z}
piqi+k

to be small for bad k and to be about 0.065 for the correct k.

(2015-11-09) 16+221

Introduction:
Historical examples

Better analysis of the unbreakable cipher

Index of coincidence (Friedman 1922)

Keep in mind that given the distribution p of letters in English we
find that ∑

i∈{a,...,z}
p2i ≈ 0.065,

where pi is the frequency of the letter i according to the
distribution above.
This is again true for the distribution q of a shift cipher encryption:

∑

i∈{A,...,Z}
q2i ≈ 0.065.

Just note that qi+k = pi with the key k.
(2015-11-09) 17+220

Introduction:
Historical examples

Better analysis of the unbreakable cipher

Consider the letters at positions 1, 1 + τ , 1 + 2τ , 1 + 3τ and so on.

If τ is a multiple of the key length κ, ie. κ | τ , the distribution q of
those letters should give

Sτ =
∑

i∈{a,...,z}
q2i ≈ 0.065.

If τ is not a multiple of the key length κ, ie. κ ∤ τ , we should see a
roughly uniform distribution with

Sτ ≈
∑

i∈{a,...,z}

(
1

26

)2

= 0.038 .

Thus we can find the key length!
(2015-11-09) 18+219

Introduction:
Historical examples

Summary

Cesar’s cipher

Only a code (no key!).

Shift cipher

Only 26 keys.

Monoalphabetic substitution

288.4 keys (= 26! = 403 291 461 126 605 635 584 000 000).
Still easy to break: frequency analysis.

The unbreakable cipher

We can break it. . . (Kasiski, Friedman)

(2015-11-09) 19+218

Introduction:
Historical examples

Conclusions

◮ Ciphertext length needed for attacks depends on the size of
the key space.

◮ Ciphertext-only vs. known-plaintext attacks: . . .

◮ Cipher design is tricky!

(2015-11-09) 20+217

Introduction:
Kerckhoffs’ principle

Kerckhoffs’ principle

The attacker knows everything. . . but the key.

(2015-11-09) 21+216

Introduction:
Black-box view of encryption

KeyGen

Enc Dec

κ

m m′c

Correctness

For every security parameter κ
and every message m we obtain
m′ = m.

Efficiency

Each box runs fast:

◮ at most a few seconds, say.

◮ polynomial time.

Security? Security! Security???

(2015-11-09) 22+215

Introduction:
Basic principles of modern cryptography

Principle 1: Exact definitions

We need rigorous, precise, exact definitions.

That is important

◮ . . . for design.
Otherwise: how to know that we did it?

◮ . . . for usage.
Otherwise: how to correctly use a system within a larger one?

◮ . . . for study.
Otherwise: how to compare two systems?

(2015-11-09) 23+214

Introduction:
Basic principles of modern cryptography

Example: What is secure encryption?

Answer 1

An encryption scheme is secure if no attacker can find the
secret key when given a ciphertext.

◮ Well, don’t we want to protect the plaintext?

◮ Even worse: consider the scheme where KeyGen outputs a
random κ-bit string and Enc and Dec merely output their
inputs. Clearly, the attacker can never find the secret key even
if he could obtain encryptions and decryptions as many as he
desires. With this definition this system would be called secure.
But it clearly is not!4

4“But that’s not what I meant!” Well: That’s exactly the point. . .
(2015-11-09) 24+213

Introduction:
Basic principles of modern cryptography

Example: What is secure encryption?

Answer 2

An encryption scheme is secure if no attacker can find the plaintext
when given a ciphertext.

◮ Better.

◮ But what if the scheme reveals 90% of the plaintext.
Then it is not secure.

(2015-11-09) 25+212

Introduction:
Basic principles of modern cryptography

Example: What is secure encryption?

Answer 3

An encryption scheme is secure if no attacker can find any
character of the plaintext when given a ciphertext.

◮ Looks good. . .

◮ But the scheme may still reveal whether your encrypted
contract specifies a salary of less than 100 000e or more.
So this is still not enough.

(2015-11-09) 26+211

Introduction:
Basic principles of modern cryptography

Example: What is secure encryption?

Answer 4

An encryption scheme is secure if no attacker can derive any
meaningful information about the plaintext when given a ciphertext.

◮ Looks even better. . .

◮ But: what is ‘meaningful’?
Well, we need to be more precise!

(2015-11-09) 27+210

Introduction:
Basic principles of modern cryptography

Example: What is secure encryption?

Answer 5

An encryption scheme is secure if no attacker can compute any
function of the plaintext when given a ciphertext.

◮ That’s best so far.. . .

Yet, it still does not specify everything. For example:

◮ Do we allow the attacker to obtain the decryption of other
ciphertexts?

◮ And how many resources does the attacker have (time,
memory, power, money)?

(2015-11-09) 28+209

Introduction:
Basic principles of modern cryptography

Principle 2:

Unproven assumptions must be precisely stated. And as ‘minimal’
as possible.

That is important because

◮ . . . almost all modern cryptographic schemes are only secure
relative to some assumption.

◮ . . . only then we can validate or falsify them.

◮ . . . otherwise we cannot compare two schemes based on
different assumptions.

◮ . . . only that allows security reductions.

(2015-11-09) 29+208

Introduction:
Basic principles of modern cryptography

Principle 3:

Cryptographic constructions must be accompanied by a precise
security reduction.

That is important because

◮ proofs are better than intuition.

(2015-11-09) 30+207

Introduction:
Basic principles of modern cryptography

Relative security

Principle

We need rigorous, precise, exact definitions.

Principle

Unproven assumptions must be precisely stated. And as ‘minimal’
as possible.

Principle

Cryptographic constructions must be accompanied by a precise
security reduction.

(2015-11-09) 31+206

Introduction:
Attack scenarios

What can we say about the attacker?

Resources

The attacker’s resources, ie. time, memory, power, money, must be
bounded either

◮ polynomially wearing our asymptotic glasses, or
◮ by specifiable constants wearing our fixed size glasses.

Task

◮ Find the key. (UBK)

◮ Find the plaintext. (OW)

◮ Find some ‘bit’ of the plaintext.
(semantic)

◮ Distinguish plaintexts. (IND)

◮ Modify a ciphertext. (NM)

Means

◮ Public-only attack
(POA/KOA/COA).

◮ Known-plaintext attack (KPA).

◮ Chosen-plaintext attack (CPA).

◮ Chosen-ciphertext attack (CCA).

(2015-11-09) 32+205

Section 3 Overview

Organizational

Introduction

Perfectly Secret Encryption
The One-Time Pad (Vernam’s cipher, 1917)
Perfect secrecy

(2015-11-09) 33+204

Perfectly Secret Encryption:
The One-Time Pad (Vernam’s cipher, 1917)

Pick a random sequence as key as long as the plaintext. Now,
encrypt as follows:

pickarandomsequenceaskeyaslongastheplaintext. . .
ZMGRSFGTLSFUWFBUVJIESVLLBYXDGMXTNYBNLXYRJLZJ. . .
OUIBSWGGOGRMAVVYILMEKFPJBQIRTSXLGFFCWXGECPWC. . .

For each letter use the shift cipher according to the corresponding
letter from the key, where A = 0, B = 1, . . . , Z = 25.

◮ This we cannot break.

◮ No one can.

◮ And we can prove that.

◮ And it essentially is the only such cipher.

(2015-11-09) 34+203

Perfectly Secret Encryption:
The One-Time Pad (Vernam’s cipher, 1917)

KeyGen

Enc Dec

κ

m m′c

◮ KeyGen produces a random κ-bit string.

◮ Enc(m,k) = m⊕ k, bit-wise XOR of plaintext and key.
◮ Dec(c, k) = c⊕ k, bit-wise XOR of ciphertext and key.

And we have

◮ the key space K = {0, 1}κ,
◮ the plaintext space M = {0, 1}κ and

◮ the ciphertext space C = {0, 1}κ.
(2015-11-09) 35+202

Perfectly Secret Encryption:
Perfect secrecy

Candidate format

KeyGen

Enc Dec

κ

m m′c

◮ KeyGen produces a random κ-bit string: K = {0, 1}κ.
◮ Enc any algorithm, possibly probabilistic.

◮ Dec any algorithm, possibly probabilistic.

Correctness

Deck(Enck(m)) = m.
(2015-11-09) 36+201

Perfectly Secret Encryption:
Perfect secrecy

KeyGen

Enc Dec

κ

m m′c

Definition

An encryption scheme (KeyGen,Enc,Dec) is perfectly secret if for
every distribution overM, every message m ∈ M and every
ciphertext c ∈ C for which prob (C = c) > 0 it holds that

prob (M = m C = c) = prob (M = m) .

(2015-11-09) 37+200

Perfectly Secret Encryption:
Perfect secrecy

Wlog. ∀m ∈M : prob (M = m) > 0, ∀c ∈ C : prob (C = c) > 0.

Lemma

An encryption scheme (KeyGen,Enc,Dec) is perfectly secret if and
only if for every distribution over M, every message m ∈ M and
every ciphertext c ∈ C it holds that

prob (C = c M = m) = prob (C = c) .

Proof.

. . .

(2015-11-09) 38+199

Perfectly Secret Encryption:
Perfect secrecy

Perfect indistinguishability

Lemma

An encryption scheme (KeyGen,Enc,Dec) is perfectly secret iff for
every distribution overM, every m0,m1 ∈ M and every ciphertext
c ∈ C it holds that

prob (C = c M = m0) = prob (C = c M = m1) .

Proof.

. . .

(2015-11-09) 39+198

Perfectly Secret Encryption:
Perfect secrecy

Indistinguishability game

◮ Prepare a key k ← KeyGen(κ) in K.
◮ Choose a hidden bit h←− {0, 1} uniformly random.
◮ Prepare a one-time oracle OTest that when called with

m0,m1 ∈ M the oracle returns c← Enck(mh).
◮ Call the attacker A with the oracle OTest and await a guess

h′ ∈ {0, 1}.
◮ If h = h′ then ACCEPT else REJECT.

Theorem

An encryption scheme (KeyGen,Enc,Dec) is perfectly secret iff for
every attacker A we have prob (Game(A) = ACCEPT) = 1

2 .

Proof.

. . . (2015-11-09) 40+197

Perfectly Secret Encryption:
Perfect secrecy

Recall: for the One-Time Pad we have K =M = C = {0, 1}κ,
KeyGen picks an element if K uniformly at random,
Enck(m) = m⊕ k, Deck(c) = c⊕ k.

Theorem

The one-time pad encryption scheme is perfectly secure.

Proof.

. . .

(2015-11-16) 41+196

Perfectly Secret Encryption:
Perfect secrecy

Drawbacks

◮ Key must be uniformly random: expensive.

◮ Key can only be used once: (m0 ⊕ k)⊕ (m1 ⊕ k) = m0 ⊕m1.

◮ Key must be as long as the message.

(2015-11-16) 42+195

Perfectly Secret Encryption:
Perfect secrecy

Key must be as long as the message.

Lemma

If (KeyGen,Enc,Dec) is perfectly secret then #K ≥ #M.

Proof.

. . .

(2015-11-16) 43+194

Perfectly Secret Encryption:
Perfect secrecy

Unfortunately, we have no choice

The One-Time Pad is essentially the only perfectly secret one:

Theorem (Shannon’s theorem, 1949)

Assume (KeyGen,Enc,Dec) is an encryption scheme with
#K = #M = #C. Then it is perfectly secret iff

1. The distribution of keys is uniform: Every key k ∈ K must be
chosen with equal probability 1

#K by the algorithm KeyGen.

2. For every m ∈M and c ∈ C there exists a unique key k ∈ K
mapping m to c = Enck(m).

(2015-11-16) 44+193

Part I

Symmetric-Key Cryptography

Symmetric-Key Encryption and Pseudorandomness, I

Practical Constructions of Block Ciphers

Symmetric-Key Encryption and Pseudorandomness, II

MACs and Collision-Resistant Hash Functions

45+192

Section 4 Overview

Symmetric-Key Encryption and Pseudorandomness, I
Computational Approach
Defining Computationally-Secure Encryption (IND-POA)
Pseudorandomness
Constructing Secure Encryption Schemes

Practical Constructions of Block Ciphers

Symmetric-Key Encryption and Pseudorandomness, II

MACs and Collision-Resistant Hash Functions

(2015-11-19) 46+191

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

◮ Perfect security essentially only with One-Time Pad.

◮ Necessarily, #K ≥ #M.

⇒ Mathematically indecipherable, but impractical.

◮ Kerckhoffs: The system must be practically, if not
mathematically, indecipherable.

⇒ RELAX!

Instead of perfect security where we consider attackers with
arbitrary runtime and 100% success now:

1. Bound resources, ie. consider only efficient attackers.

2. Allow partial success, ie. consider also attackers that only ‘win’
with some non-negligible success probability.

(2015-11-19) 47+190

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Fixed-size glasses

Definition (Concrete approach)

Let t, ε ∈ R>0 be some constants.
A scheme is (t, ε)-secure iff every attacker running for time at
most t succeeds with probability at most ε in breaking the scheme.

Examples t ε

n-bit key t t · 2−n
128-bit key 280 2−48

some attacker A 4 years ε
A 8 years ¿2ε?
A 2 years ¿1

2ε?

But: Which hardware? Moore’s law?

(2015-11-19) 48+189

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Asymptotic glasses

Definition (Asymptotic approach)

A scheme is (asymptotically, polynomially) secure iff every attacker
running in polynomial time succeeds with negligible probability in
breaking the scheme.

◮ Polynomial time: t(n) ∈ nO(1), ie. there exists a constant c
there is an n0 such that for n ≥ n0 we have |t(n)| ≤ nc.

◮ Negligible success: ε(n) is eventually smaller than any inverse
polynomial or ε(n)−1 is eventually larger than any polynomial,
ie. for any constant c and large n we have |ε(n)| ≤ n−c.

◮ Warning: Significant success: ε(n)−1 ∈ nO(1).
◮ You can never have negligible and significant.
◮ But you can have non-negligible and non-significant.
◮ Negligible implies non-significant.

(2015-11-19) 49+188

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Example for polynomial time with negligible success

Suppose we have a scheme that is secure and an attacker running
n3 minutes succeeds in breaking it with success probability
240 · 2−n.

◮ n = 40: Attacker runs 45. days for success 1.

◮ n = 50: Attacker runs 87. days for success 2−10.

◮ n = 500: Attacker runs 238. years for success 2−460.

(2015-11-19) 50+187

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Examples for negligible and significant functions

◮ 2−n is negligible.
◮ 2−

√
n is negligible.

◮ n−1 000 000 000 000 is not negigible.
◮ n− log2 n is negligible.
◮ n− log2 log2 log2 log2 log2 n is negligible.
◮ Let f(n) = 2−n for even n and f(n) = 1 otherwise.

This f is not negligible and not significant.

Lemma

Let f1, f2 be negligible functions. Then

1. The function f3 with f3(n) = f1(n) + f2(n).

2. For any positive polynomial p, the function f4 with
f4(n) = p(n) · f1(n) is negligible.

(2015-11-19) 51+186

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Necessity of relaxations

Practical systems must have K much smaller thanM.
Then two attacks are always possible:

◮ Brute force attack: . . . runtime #K, success 1.

◮ Guessing attack: . . . runtime 1, success 1
#K .

Side remark ‘amplification’: we may call this guessing attack
repeatedly until we are successful. . . . runtime #K, success 1.

Consequences

◮ We must restrict attackers and their success.

◮ #K must be ‘larger’ than the attackers runtime.

(2015-11-19) 52+185

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Efficient computation
We need a stable model that does not depend on the computer or the programming
language or the mathematical computation model.

Church-Turing thesis: All intuitively good models are equivalent.

Our refererence are probabilistic polynomial-time
interactive Turing-machines.

ITM0

work tape(s)

random input

ITM1

work tape(s)

random input

message 0 → 1

message 1 → 0

switch

common input

ITM0’s output ITM1’s output

ITM0’s aux. input ITM1’s aux. input

Figure: A linked pair of interactive TMs
(2015-11-19) 53+184

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Randomness

Why randomness? Well, everything else is predictable.

How to obtain randomness?

Theory: We just assume to have a tape with random bits.
Practice:

◮ Software random bit generators (entropy collectors).
◮ /dev/random: 25.6 bit/sec.

◮ Hardware random bit generators (true randomness).
◮ PRG310-4: up to 218. bit/sec.

◮ Pseudo-random bit generators.
◮ RSA-based: 224 bit/sec,
◮ AES-based: ≫ 230 bit/sec,
◮ LFSR (not good for crypto): ≈ 239 bit/sec.

Quality?

(2015-11-19) 54+183

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Reductions

◮ . . . prove security relative to some problem X.

◮ Reductions are unavoidable at present
since we are still unable to prove that any of the relevant
problems cannot be solved by a polynomial time algorithms.

◮ But we know: any such bound implies the existence of a
one-way function, and

Theorem

If one-way functions exist then P 6= NP .

(2015-11-23) 55+182

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Reductions

Security game G for scheme Π

Attacker A

◮ Given an efficient attacker A: runtime t(n), success ε(n).
◮ It assumes to play a given security game G,

which describes a break for some scheme Π.

(2015-11-23) 56+181

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Reductions

Game for Problem X

Reduction R

Attacker A

◮ We let it play against our reduction R.
◮ We must ensure that A cannot detect a difference.
◮ We may manipulate input and oracles.
◮ We may use the answer.
◮ The reduction R tries to solve some problem X .

(2015-11-23) 56+181

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Reductions
Game for Problem X

Reduction R

Attacker A

◮ Assume: the reduction solve problem X with probability at
least 1

nc provided the attacker wins the original game.

◮ Runtime polynomial, success ε(n)
nc .

◮ Thus: If A is successful, ie. ε(n) is not negligible, then also R
is successful, ie. ε(n)

nc is not negligible.

(2015-11-23) 56+181

Symmetric-Key Encryption and Pseudorandomness, I:
Computational Approach

Reductions
Game for Problem X

Reduction R

Attacker A

Short

If A is successful then we can solve the problem X.

Theorem (Relative security)

If the problem X is hard then the scheme is secure
in the sense of the security game G.

(2015-11-23) 56+181

Symmetric-Key Encryption and Pseudorandomness, I:
Defining Computationally-Secure Encryption (IND-POA)

Definition

A symmetric-key encryption scheme is a tuple (KeyGen,Enc,Dec)

KeyGen

Enc Dec

1κ

m m′c

such that

◮ Correctness: For every κ and k = KeyGen(1κ) and for every
message m ∈ M we have Deck(Enck(m)) = m.

◮ Efficiency: All algorithms (or protocols) run in polynomial
time.

◮ Security: Well, . . .
(2015-11-23) 57+180

Symmetric-Key Encryption and Pseudorandomness, I:
Defining Computationally-Secure Encryption (IND-POA)

Indistinguishability game GIND

◮ Prepare a key k ← KeyGen(1κ) in K.
◮ Choose a hidden bit h←− {0, 1} uniformly random.
◮ Prepare a one-time oracle OTest that when called with

m0,m1 ∈ M the oracle returns c← Enck(mh).
◮ Call the attacker A with input 1κ and the oracle OTest. Await

a guess h′ ∈ {0, 1}.
◮ If h = h′ then ACCEPT else REJECT.

(2015-11-23) 58+179

Symmetric-Key Encryption and Pseudorandomness, I:
Defining Computationally-Secure Encryption (IND-POA)

IND-POA security

Definition

A symmetric-key encryption scheme Π is indistinguishable in the
presence of an eavesdropper5 iff for each probabilistic
polynomial-time attacker A the advantage

advIND
Π (A) =

∣∣∣∣prob
(
GIND(A) = ACCEPT

)
− 1

2

∣∣∣∣

is negligible.

5IND-POA = INDistinguishable under Public Only Attack
(2015-11-23) 59+178

Symmetric-Key Encryption and Pseudorandomness, I:
Defining Computationally-Secure Encryption (IND-POA)

Alternative IND-POA security

Definition

A symmetric-key encryption scheme Π is indistinguishable in the
presence of an eavesdropper5 iff for each probabilistic
polynomial-time attacker A the function

∣∣∣ prob
(
GIND(A) = ACCEPT h = 0

)
−

prob
(
GIND(A) = REJECT h = 1

) ∣∣∣

is negligible.

5IND-POA = INDistinguishable under Public Only Attack
(2015-11-23) 59+178

Symmetric-Key Encryption and Pseudorandomness, I:
Defining Computationally-Secure Encryption (IND-POA)

Semantic security

Recall

Answer 5

An encryption scheme is secure iff no attacker can compute any
function of the plaintext when given a ciphertext.

Why did we not use this formulation?

◮ It is difficult to handle. We have to consider any function.

◮ It turns out to be equivalent to the previous definition.

(2015-11-23) 60+177

Symmetric-Key Encryption and Pseudorandomness, I:
Defining Computationally-Secure Encryption (IND-POA)

Semantic security

Theorem

If (KeyGen,Enc,Dec) is
IND-POA-secure then for
each probabilistic
polynomial-time attacker A
and all i the advantage

∣∣∣∣∣prob
(
A(1κ,Enck(m))

= biti(m)

)
− 1

2

∣∣∣∣∣

is negligible.

Game Gbiti-semantic

◮ Prepare a key k ← KeyGen(1κ) in K
and a message m←−−M.

◮ Prepare a one-time oracle OTest that
when called with no input the oracle
and returns c← Enck(m).

◮ Call the attacker A with input 1κ

and the oracle OTest. Await a guess
b′ ∈ {0, 1}.

◮ If biti(m) = b′ then ACCEPT else
REJECT.

(2015-11-26) 61+176

Symmetric-Key Encryption and Pseudorandomness, I:
Defining Computationally-Secure Encryption (IND-POA)

Semantic security

When trying to generalize this theorem to arbitrary functions f instead of biti this gets
tricky where picking m0 and m1.

Definition

A symmetric-key encryption scheme Π is
semantically secure in the presence of an
eavesdropper iff for each probabilistic
polynomial-time attacker A there exists a
probabilistic polynomial-time attacker A′ such
that for each efficiently-samplable distribution M
and all polynomial-time computable functions f
and h the advantage

advsemantic
Π (A)

=
∣∣ prob

(
Gsemantic(A(h(m),OTest)) = ACCEPT

)

− prob
(
Gsemantic(A′(h(m))) = ACCEPT

) ∣∣

is negligible when m is chosen according to M .

Game Gsemantic

◮ Prepare a key k ← KeyGen(1κ) in
K and a message m = M()
sampled by M fromM.

◮ Prepare a one-time oracle OTest

that when called with no input the
oracle and returns c← Enck(m).

◮ Call the attacker A with input 1κ,
h(m) and the oracle OTest. Await a
guess b′ ∈ {0, 1}.

◮ If f(m) = b′ then ACCEPT else
REJECT.

Theorem

A symmetric-key encryption scheme is indis-
tinguishable in the presence of an eavesdrop-
per
iff
it is semantically secure in the presence of an
eavesdropper.

(2015-11-26) 62+175

Symmetric-Key Encryption and Pseudorandomness, I:
Pseudorandomness

Why pseudorandomness first?

◮ Intuition: If ciphertext looks random, no attacker can learn
from it.

◮ XOR with a pseudorandom string may be an alternative to the
One-Time-Pad.

(2015-11-26) 63+174

Symmetric-Key Encryption and Pseudorandomness, I:
Pseudorandomness

Pseudorandom generator

Definition

Gs r

1κ The expansion factor ℓ is a polynomial function and the
fixed-length generator G is a deterministic polynomial-time
algorithm that for input s ∈ {0, 1}κ outputs a bitstring of
length ℓ(κ).

Now, G is a fixed-length pseudorandom generator iff

1. Expansion: ℓ(κ) > κ.
2. Pseudorandomness: For each probabilistic polynomial-time distinguisher D the

advantage
advG(D) = |prob (D(G(s)) = 1)− prob (D(r) = 1)|

is negligible. Here, s←− {0, 1}κ and r←− {0, 1}ℓ(κ) are chosen uniformly at
random.

Exercise

Formulate pseudorandomness with a game.

(2015-11-26) 64+173

Symmetric-Key Encryption and Pseudorandomness, I:
Pseudorandomness

The output of a pseudorandom generator is far from random:
Say, κ = 3, ℓ(κ) = 6. Then the distributions of r and G(s) may
look as follows:

Thus with enough time a simple algorithm can detect the difference.

(2015-11-26) 65+172

Symmetric-Key Encryption and Pseudorandomness, I:
Pseudorandomness

Brute force attack

Just consider the algorithm Dbrute force that tests whether its input
r equals G(s) for some s ∈ {0, 1}κ. If so it answers 1, otherwise 0.
That takes time 2κ and has best possible advantage

advG(Dbrute force) ≥ 1− 2κ−ℓ(κ) ≥ 1

2
.

⇒ The seed must be long enough.

(2015-11-26) 66+171

Symmetric-Key Encryption and Pseudorandomness, I:
Pseudorandomness

No efficient attack

However, no fast algorithm should be able to detect this difference.
That’s the definition of pseudorandomness.

Theorem

Pseudorandom generators exist ⇐⇒ one-way function exist.

(2015-11-26) 67+170

Symmetric-Key Encryption and Pseudorandomness, I:
Pseudorandomness

Predictors (prophets) and postdictors (historians)

A predictor P predicts bit i of G(s) ∈ {0, 1}ℓ(κ) given bits 1..i − 1.

Theorem (Yao)

1. If there is a predictor P for a generator G with advantage

advGpredict(P) =
∣∣ prob (P(G(s)[1..(i − 1)]) = G(s)[i])

− prob (P(r[1..(i − 1)]) = r[i])
∣∣

then there is a distinguisher D with the same advantage.
2. Given a distinguisher D there is a predictor P with advantage

advGpredict(P) ≥ 1
ℓ(κ) advG(D).

Reverse it: postdictors.
(2015-11-30) 68+169

Symmetric-Key Encryption and Pseudorandomness, I:
Constructing Secure Encryption Schemes

An encryption scheme ΠG from a generator G

KeyGen

Enc

G
⊕

Dec

G
⊕

1κ

m m′c

(2015-11-30) 69+168

Symmetric-Key Encryption and Pseudorandomness, I:
Constructing Secure Encryption Schemes

An encryption scheme ΠG from a generator G

KeyGen

Input: 1κ.
Output: k ∈ {0, 1}κ.

◮ Pick k ←−∈ {0, 1}κ.

Enc

Input: k, m.
Output: c.

◮ c← G(k)⊕m.

Dec

Input: k, c.
Output: m.

◮ m← G(k) ⊕ c.

(2015-11-30) 69+168

Symmetric-Key Encryption and Pseudorandomness, I:
Constructing Secure Encryption Schemes

Indistinguishability from Pseudorandomness

Theorem

If G is a pseudorandom generator then the just constructed
fixed-length encryption scheme ΠG is indistinguishable in the
presence of an eavesdropper.

(2015-11-30) 70+167

Symmetric-Key Encryption and Pseudorandomness, I:
Constructing Secure Encryption Schemes

Concrete security

Notice that the previous theorem and proof can be carried out with
conrete bounds for time and advantage:

Theorem

If G is a (t, ε)-pseudorandom generator6 then ΠG is
(t− c, ε)-indistinguishable7 for some (small) constant c.

6Ie. each distinguisher running in time t has advantage at most ε.
7Ie. each attacker running in time t− c has advantage at most ε.

(2015-11-30) 71+166

Section 5 Overview

Symmetric-Key Encryption and Pseudorandomness, I

Practical Constructions of Block Ciphers
Substitution-Permutation Networks
AES
Feistel Networks
DES
Increasing the Key Length of a Block Cipher
Brief look: differential and linear cryptanalysis
Summary
Modes of operation

Symmetric-Key Encryption and Pseudorandomness, II

MACs and Collision-Resistant Hash Functions

(2015-12-03) 72+165

Practical Constructions of Block Ciphers:
Substitution-Permutation Networks

Encryption is done by iterating
rounds consisting of

◮ Mix (eg. XOR) with round key.

◮ Parallel S-box application.

◮ Permutation.

The S-box is the only non-linear
component.

⇒ Confusion and diffusion.

round 0

mix with round-key k0

S0,0 S0,1 S0,2 S0,3

round 1

mix with round-key k1

S1,0 S1,1 S1,2 S1,3

round 2

mix with round-key k2

S2,0 S2,1 S2,2 S2,3

round 3

mix with round-key k3

S3,0 S3,1 S3,2 S3,3

mix round-key k4

(2015-12-03) 73+164

Practical Constructions of Block Ciphers:
AES

AES

1997: NIST announces competition for
Advanced Encryption Standard.
Submissions: 15.
Finalist: 5.

◮ Rijndael (SPN; Joan Daemen &
Vincent Rijmen).

◮ Serpent (SPN).

◮ Twofish (Feistel).

◮ RC6 (Feistel).

◮ MARS (Feistel; IBM).

2000: Rijndael is selected as AES.
2002: AES effective.

SubBytes

ShiftRows

MixColumns

AddRoundKey

c©John Savard (1999)

(2015-12-03) 74+163

Practical Constructions of Block Ciphers:
AES

AES

The field F28

F28 ∋ a = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.
Representation: 8 bits for an element = 1 byte.
Addition: XOR, (a+ b)i = ai + bi.
Multiplication: as for polynomials modulo x8 + x4 + x3 + x+ 1.
Example 57 · 83 = C1:

(x6 + x
4 + x

2 + x+ 1) · (x7 + x+ 1) = x
13 + x

11 + x
9 + x

8 + x
7+

x
7 + x

5 + x
3 + x

2 + x+

x
6 + x

4 + x
2 + x+ 1

= x
13 + x

11 + x
9 + x

8 + x
6 + x

5 + x
4 + x

3 + 1

= x
7 + x

6 + 1 mod x
8 + x

4 + x
3 + x+ 1.

Field: You can divide by every non-zero element.

(2015-12-03) 75+162

Practical Constructions of Block Ciphers:
AES

AES

The S-box

S :

F28 −−−→ F28 −−−→ F28 ,

y 7−→ y−1=̂

a0
a1
a2
a3
a4
a5
a6
a7

 7−→

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

 ·

a0
a1
a2
a3
a4
a5
a6
a7

+

1
1
0
0
0
1
1
0

Highly nonlinear:
y 7→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

(2015-12-03) 76+161

Practical Constructions of Block Ciphers:
AES

AES

The SubBytes operation

Apply the S-box to every byte.

S

(2015-12-03) 77+160

Practical Constructions of Block Ciphers:
AES

AES

The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

(2015-12-03) 78+159

Practical Constructions of Block Ciphers:
AES

AES

Polynomials over the field F28

R = F28 [z]/(z
4 + 1) ∋ a0 + a1z + a2z

2 + a3z
3,

where ai ∈ F28 .
Addition: coefficient-wise (a+ b)i = ai + bi, XOR.
Multiplication: as for polynomials modulo z4 + 1. Another way to express d = a · b is
by the following matrix equation:

d0
d1
d2
d3

 =

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

 ·

b0
b1
b2
b3

Not a field: (z + 1)4 = 0.

(2015-12-03) 79+158

Practical Constructions of Block Ciphers:
AES

AES

The MixColumns operation

Each column is considered as a polynomial and multiplied by
c = 02+ 01z + 01z2 + 03z3.
Inverse: Multiply with d = 0E+ 09z + 0Dz2 + 0Bz3.

·c

(2015-12-03) 80+157

Practical Constructions of Block Ciphers:
AES

AES

Nonlinear part of the key schedule

Ri :

(F28)
4 −→ (F28)

4,

a

b

c

d

7−→

S (b) + xi−1

S (c)

S (d)

S (a)

Due to the use of the S-box this map is non-linear.

(2015-12-03) 81+156

Practical Constructions of Block Ciphers:
AES

AES

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

(2015-12-03) 82+155

Practical Constructions of Block Ciphers:
AES

AES

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

(2015-12-03) 83+154

Practical Constructions of Block Ciphers:
AES

AES

◮ Well explained design decisions.

◮ Good S-box.

◮ Avalanche effect.
◮ In one round a difference affects at least five bytes.

◮ Best known attack in 2015: 2126.1 steps to break AES-128
(Andrey Bogdanov, Dmitry Khovratovich & Christian
Rechberger, 2012).

(2015-12-03) 84+153

Practical Constructions of Block Ciphers:
AES

Jeff Moser (2009)
(2015-12-03) 85+152

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Practical Constructions of Block Ciphers:
Feistel Networks

◮ 1973: Basis for DES.

◮ Function F uses round keys,
not necessarily invertible.

◮ Easy to invert.

◮ Principle reused in many
variants in various ciphers.

x1x0

F

k1

⊕

48
32

x1

32

y1

F

k2

⊕
x2 y2

F

k3

⊕
x3y3

F

k4

⊕
x4 y4

x4 x5.
.
.

.

.

.

.

.

.

32 32

32 32

(2015-12-07) 86+151

Practical Constructions of Block Ciphers:
DES

⊕⊕⊕⊕⊕⊕

S1

⊕⊕⊕⊕⊕⊕

S2

⊕⊕⊕⊕⊕⊕

S3

⊕⊕⊕⊕⊕⊕

S4

⊕⊕⊕⊕⊕⊕

S5

⊕⊕⊕⊕⊕⊕

S6

⊕⊕⊕⊕⊕⊕

S7

⊕⊕⊕⊕⊕⊕

S8

x

u
v

w

y

E

Σki

S8

P

Figure: Illustration of the DES round function Fki
.

(2015-12-07) 87+150

Practical Constructions of Block Ciphers:
DES

Security features

◮ The final S-boxes have been chosen to resist differential
cryptanalysis.8

◮ Avalanche effect:

(S-4) Changing one of the six input bits of an S-box affects at least
two of the four output bits.

Together with the rest of the structure that leads to a property
like: Consider two 64-bit values x(0) and x(1) that differ in a
single bit. Then a few rounds later all bits are affected.
Namely, after eight rounds. DES uses 16 rounds.

8Coppersmith (1994) revealed that many years later. Actually, the original
S-boxes proposed by IBM were much worse. The NSA(!) proposed the new
ones and they seemingly ‘knew’ differential cryptanalysis.

(2015-12-07) 88+149

Practical Constructions of Block Ciphers:
DES

DES broken

DES was designed to provide 56-bit security.

◮ Brute-force is practical.

1998 EFF’s Deep Crack ($250 000) breaks one
DES key in 56 hours.

×58
EFF (2004)

2006 Ruhr-Uni-Bochum & Uni-Kiel, COPA-
COBANA ($10 000) with 120 FPGAs needs
6.4 days to break a DES key.

Gerd Pfeiffer (2007)

◮ Differential cryptanalysis: 249 chosen plain-
texts (CPA).

◮ Linear cryptanalysis: 243 known plaintexts (KPA).

(2015-12-07) 89+148

Practical Constructions of Block Ciphers:
Increasing the Key Length of a Block Cipher

DES twice

◮ Enc(k0,k1)(m)← EncDES
k1

EncDES
k0

(m).

◮ Meet-in-the-middle: at best only 57-bit security.

DES three times, only two keys

◮ Enc(k0,k1)(m)← EncDES
k0

DecDES
k1

EncDES
k0

(m).

◮ There is an attack using 256 chosen plaintexts. . .

3DES

◮ Enc3DES
(k0,k1,k2)

(m)← EncDES
k2

DecDES
k1

EncDES
k0

(m).

◮ Meet-in-the-middle: at best 112-bit security.
Not 168, but still. . .

◮ This was to be defeated by AES candidates in speed and
security!

(2015-12-07) 90+147

Practical Constructions of Block Ciphers:
Brief look: differential and linear cryptanalysis

Differential cryptanalysis (Biham & Shamir, 1991)

Consider inputs x0, x1 with a difference ∆x. Measure the amount
of output y0, y1 with difference ∆y:

diffE(∆x→ ∆y)

= prob
(
E(X) ⊕E(X ⊕∆x) = ∆y X ←−− {0, 1}k

)

=
1

2k
#
{
x ∈ {0, 1}k E(x)⊕ E(x⊕∆x) = ∆y

}

∈ [0, 1].

If the cipher is suitably ‘random’ we expect this number to be small
unless ∆x = 0 and ∆y = 0.
Any deviation should and does lead to an attack. . .

(2015-12-07) 91+146

Practical Constructions of Block Ciphers:
Brief look: differential and linear cryptanalysis

Linear cryptanalysis (Matsui 1994)

How far is the bit 〈b E(X)〉 away from the linear function 〈a X〉?

biasE(a, b)

= prob
(
〈a X〉 = 〈b E(X)〉

)
− prob

(
〈a X〉 6= 〈b E(X)〉

)

= 2 prob
(
〈a X〉 = 〈b E(X)〉

)
− 1

=
1

2k

∑

x∈{0,1}k
(−1)〈a x〉(−1)〈b E(x)〉

∈ [−1, 1].

If the cipher is suitably ‘random’ we expect this number to be small.
Any deviation should and does lead to an attack. . .

(2015-12-07) 92+145

Practical Constructions of Block Ciphers:
Summary

Advanced Encryption Standard

k ←− {0, 1}128

AES AES−1

κ

{0, 1}128 ∋ m m′c

128-bit secure. . . 126.1 remain

(2015-12-07) 94+143

Practical Constructions of Block Ciphers:
Summary

We will see:

Fact

None of these block ciphers can be indistinguishable under chosen
plaintext attacks.

Instead we want them to be ‘pseudorandom functions’.

Fact

A pseudorandom function ‘is’ OW-CPA secure.

Further, these block ciphers only apply to a fixed block size. . .

Question

How can we use them for longer messages?

(2015-12-07) 95+142

Practical Constructions of Block Ciphers:
Modes of operation

ECB mode

m1

Enck

c1

m2

Enck

c2

m3

Enck

c3

m4

Enck

c4

. . .

Pro:

◮ . . . is simple, parallelizable.

◮ . . . can be OW-CPA secure.

Con:

◮ . . . is never be indistinguishable (IND-POA
secure).

. . . (Larry Ewing, 1996)

(2015-12-10) 97+140

Practical Constructions of Block Ciphers:
Modes of operation

CBC mode

IV

c0

m1

⊕

Enck

c1

m2

⊕

Enck

c2

m3

⊕

Enck

c3

m4

⊕

Enck

c4

. . .

Pro:
◮ . . . is self synchronizing, partially parallelizable.
◮ . . . can be IND-CPA secure.

. . . (Larry Ewing, 1996)
Con:

◮ . . . with fixed IV is not IND-CPA secure.
(2015-12-10) 98+139

Practical Constructions of Block Ciphers:
Modes of operation

CTR mode

ctr

c0

ctr+1

Enck

⊕m1

c1

ctr+2

Enck

⊕m2

c2

ctr+3

Enck

⊕m3

c3

ctr+4

Enck

⊕m4

c4

. . .

Pro:

◮ . . . can be parallelized and precomputed.

◮ . . . can be IND-CPA secure.

Con:

◮ . . . is not self synchronizing.

(2015-12-10) 99+138

Practical Constructions of Block Ciphers:
Modes of operation

Security of these modes

Theorem

Assume that Enc·(·) is a pseudorandom function and for all
the constructions the message length is fixed. Then

1. ECB mode is OW-CPA secure but not IND-POA
secure.

2. CBC- mode with a fixed initialization vector is not
IND-CPA secure.

3. CBC mode with a random initialization vector for each
message is IND-CPA secure.

4. CTR mode with a random initialization vector for each
message is IND-CPA secure.

5. CTR mode with a random initialization vector for each
key is IND-CPA secure.

6. None of these modes can be IND-CCA secure.

We defer the detailed treatment.

P
O

A

P
C
A

C
P
A

C
C
A

UBK

OW

IND

NM

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•

•
•
•

•
•
•• •
•
•

?

See Bellare, Desai, Pointcheval
& Rogaway (1998). Relations
among notions of security for
public-key encryption schemes.

(2015-12-10) 100+137

https://cseweb.ucsd.edu/~mihir/papers/relations.html
https://cseweb.ucsd.edu/~mihir/papers/relations.html
https://cseweb.ucsd.edu/~mihir/papers/relations.html

Section 6 Overview

Symmetric-Key Encryption and Pseudorandomness, I

Practical Constructions of Block Ciphers

Symmetric-Key Encryption and Pseudorandomness, II
Security Against Chosen-Plaintext Attacks (IND-CPA)
Constructing CPA-secure Encryption Schemes
Security Against Chosen-Ciphertext Attacks (IND-CCA)

MACs and Collision-Resistant Hash Functions

101+136

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Plaintext Attacks (IND-CPA)

Indistinguishability game GIND-CPA

◮ Prepare a key k ← KeyGen(1κ) in K.
◮ Choose a hidden bit h←− {0, 1}

uniformly random.
◮ Prepare an encryption oracle OEnc.

When called with m ∈ M the oracle
returns c← Enck(m).

◮ Prepare a one-time oracle OTest.
When called with m∗0,m

∗
1 ∈ M the

oracle returns c∗ ← Enck(m
∗
h).

◮ Call the attacker A with input 1κ

and the oracles OEnc and OTest.
Await a guess h′ ∈ {0, 1}.

◮ If h = h′ then ACCEPT
else REJECT.

Definition

A symmetric-key encryption scheme
Π is indistinguishable under chosen
plaintext attack
iff
for each probabilistic polynomial-time
attacker A the advantage

advIND-CPA(A) =
∣∣∣∣prob

(
GIND-CPA(A) = ACCEPT

)
− 1

2

∣∣∣∣

is negligible.

102+135

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Plaintext Attacks (IND-CPA)

Theorem

There are symmetric-key encryption schemes that are
IND-POA-secure but not IND-CPA-secure.

Theorem

A deterministic symmetric-key encryption scheme is never
IND-CPA-secure.

103+134

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Plaintext Attacks (IND-CPA)

Longer messages

Theorem (Arbitrary fixed-length length)

Given an IND-CPA-secure symmetric-key encryption scheme and fix
a length µ, then the ‘codebook mode’ symmetric-key encryption
scheme with

EncECB
k (m0| . . . |mµ−1) := Enck(m0)| . . . |Enck(mµ−1)

is also IND-CPA-secure.

Clearly, the number µ of blocks of the plaintext is clearly visible in
the ciphertext. This scheme is not length-hiding.
There are schemes which are length-hiding to a certain extent.

(2015-12-14) 105+132

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Plaintext Attacks (IND-CPA)

CPA in history

WWII: Deciphering Enigma

◮ Placing of mines and attacks of chosen targets.

◮ Germans sent messages containing the place and coordinates
of the target.

WWII: Saving Midway Island

◮ Japanese message partially decrypted: “attack AF”.

◮ Washington did not believe that AF = Midway Island.

◮ Fake message from Midway that freshwater supplies were low.

◮ Japanese intercepted and reported “AF is low on water.”

⇒ Midway saved and significant losses for Japan.

Chosen plaintext attacks
are relevant!

(2015-12-14) 106+131

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Plaintext Attacks (IND-CPA)

Left-or-right game GLOR-CPA

◮ Prepare a key k ← KeyGen(1κ) in K.
◮ Choose a hidden bit h←− {0, 1}

uniformly random.
◮ Prepare an oracle OLOR, called

left-or-right oracle. When called with
m0,m1 ∈ M the oracle returns
c← Enck(mh).

◮ Call the attacker A with input 1κ

and the oracle OLOR. Await a guess
h′ ∈ {0, 1}.

◮ If h = h′ then ACCEPT else
REJECT.

Definition

A symmetric-key encryption scheme
Π is left-or-right-secure under
chosen plaintext attack iff for each
probabilistic polynomial-time
attacker A the advantage

advLOR-CPA(A) =
∣∣∣∣prob

(
GLOR-CPA(A) = ACCEPT

)
− 1

2

∣∣∣∣

is negligible.

(2015-12-17) 107+130

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Plaintext Attacks (IND-CPA)

Theorem

1. Given an IND-CPA attacker A′ then there is an LOR-CPA
attacker A such that

advIND-CPA(A′) ≤ advLOR-CPA(A).

In particular: LOR-CPA secure ⇒ IND-CPA secure.

2. Given an LOR-CPA attacker A that calls OLOR at most
ℓ times then there is an IND-CPA attacker A′ such that

advLOR-CPA(A) ≤ ℓ · advIND-CPA(A′).

In particular: IND-CPA secure ⇒ LOR-CPA secure.

(2015-12-17) 108+129

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Plaintext Attacks (IND-CPA)

On the proof of (2)

Given an LOR-CPA attacker A construct an IND-CPA attacker A′ as follows:

◮ Pick a value t ∈ N<ℓ.
◮ Guess the hidden bit h′′ ←− {0, 1}.
◮ Define OLOR(m0,m1) as follows: On call t, return OTest(m0,m1), before return
OEnc(mh′′), afterwards return OEnc(m¬h′′).

◮ Call A and expect h′ ∈ {0, 1}.
◮ Return h′.

0 1 2 3 4 5 6 7

Each column is one situa-
tion and tells which mes-
sages are encrypted by
OLOR in the various calls.

A green circle to the right
of the line means that
OLOR uses the hidden
bit h′′. A red circle to the
left means that it uses its
complement ¬h′′.

Symmetric-Key Encryption and Pseudorandomness, II:
Constructing CPA-secure Encryption Schemes

Pseudorandom function

◮ In some sense a pseudorandom function is a pseudorandom
generator that outputs a function {0, 1}κ → {0, 1}κ.

◮ The number of functions {{0, 1}κ → {0, 1}κ} is 2ℓ(κ) with
ℓ(κ) = κ · 2κ. This ℓ is not polynomial.

◮ A random function in {{0, 1}κ → {0, 1}κ} cannot be chosen
or handed over at once by a polynomial time machine. But. . .

◮ We consider keyed functions

F :
{0, 1}κ −→ {{0, 1}κ → {0, 1}κ} ,

k 7−→ Fk(x)

with a key k ∈ {0, 1}κ.
(2015-12-17) 109+128

Symmetric-Key Encryption and Pseudorandomness, II:
Constructing CPA-secure Encryption Schemes

Pseudorandom function F

Definition

A keyed function F : {0, 1}κ → {{0, 1}κ → {0, 1}κ} , k 7→ Fk(·) is
a pseudorandom function iff it is probabilistic polynomial-time
computable and for each probabilistic polynomial-time distinguisher
D the advantage

advF (D) = |prob (D(Fk(·)) = 1)− prob (D(f(·)) = 1)|

is negligible. Here, k ←− {0, 1}κ and f ←− {{0, 1}κ → {0, 1}κ}
are chosen uniformly at random.9

9We can choose f ad-hoc: . . .
(2015-12-17) 110+127

Symmetric-Key Encryption and Pseudorandomness, II:
Constructing CPA-secure Encryption Schemes

Theorem

The following are equivalent

◮ One-way functions exist.

◮ Pseudorandom generators exist.

◮ Pseudorandom functions exist.

◮ Pseudorandom permutations exist.

(2015-12-17) 111+126

Symmetric-Key Encryption and Pseudorandomness, II:
Constructing CPA-secure Encryption Schemes

Pseudorandom function F , game version

GPRF : D 7→ {ACCEPT,REJECT}

◮ Pick k ←− {0, 1}κ, W0 ← Fk.
◮ Pick f ←− {{0, 1}κ → {0, 1}κ},

W1 ← f .
◮ Choose hPRF ←− {0, 1}.
◮ Call the player D with input

WhPRF and await its guess
h′,PRF ∈ {0, 1}.

◮ If hPRF = h′,PRF then ACCEPT
else REJECT.

We consider a keyed function

F :
{0, 1}κ −→ {{0, 1}κ → {0, 1}κ} ,

k 7−→ Fk(·).

We compare to a random function

f : {0, 1}κ −→ {0, 1}κ .

A probabilistic polynomial-time attacker D attempts
to win the game GPRF. Its advantage

advPRF(D) := 2
∣∣prob

(
GPRF(D) = ACCEPT

)
− 1

2

∣∣

is required to be negligible.

(2015-12-17) 112+125

Symmetric-Key Encryption and Pseudorandomness, II:
Constructing CPA-secure Encryption Schemes

Encryption scheme Πtry
F , first try

Let F : {0, 1}κ → {{0, 1}κ → {0, 1}κ} be a pseudorandom function.

KeyGen

Input: 1κ.
Output: k ∈ {0, 1}κ.

◮ k ←− {0, 1}κ.

Enc

Input: k, m.
Output: c.

◮ c← Fk(m).

Dec

Input: k, c.
Output: m.

◮ m← F−1k (c).

Problems: Need permutation. And never IND-CPA secure.

(2015-12-17) 113+124

Symmetric-Key Encryption and Pseudorandomness, II:
Constructing CPA-secure Encryption Schemes

Encryption scheme Πrand
F , randomized

Let F : {0, 1}κ → {{0, 1}κ → {0, 1}κ} be a pseudorandom function.

KeyGen

Input: 1κ.
Output: k ∈ {0, 1}κ.

◮ k ←− {0, 1}κ.

Enc

Input: k, m.
Output: c.

◮ Choose r ←− {0, 1}κ.
◮ c← [r, Fk(r)⊕m].

Dec

Input: k, c.
Output: m.

◮ m← Fk(c0)⊕ c1.

(2015-12-17) 113+124

Symmetric-Key Encryption and Pseudorandomness, II:
Constructing CPA-secure Encryption Schemes

Security

Clearly, the encryption scheme Πrand
F is correct and efficient.

Theorem

F pseudorandom function ⇒ Πrand
F IND-CPA-secure.

(2015-12-17) 114+123

Symmetric-Key Encryption and Pseudorandomness, II:
Constructing CPA-secure Encryption Schemes

Security of modes of operation

Theorem

If F is a pseudorandom function then CTR mode10 with Fk is
IND-CPA secure.

Exercise

Prove this.

A similar statement holds for CBC mode.

10with a randomly chosen initial ctr
(2015-12-17) 115+122

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Ciphertext Attacks (IND-CCA)

Indistinguishability game GIND-CCA

◮ Prepare a key k ← KeyGen(1κ) in K.
◮ Choose a hidden bit h←− {0, 1} uniformly

random.
◮ Prepare an encryption oracle OEnc. When called

with m ∈ M the oracle returns c← Enck(m).
◮ And prepare a decryption oracle ODec. When

called with c ∈ C the oracle returns
m← Deck(c).

◮ Prepare a one-time oracle OTest. When called
with m∗0,m

∗
1 ∈ M the oracle returns

c∗ ← Enck(m
∗
h).

◮ Call the attacker A with input 1κ and the oracles
OEnc, ODec and OTest. Await a guess h′ ∈ {0, 1}.

◮ If the decryption oracle has even been called with
the (first) output c∗ of the test oracle as input
then randomly ACCEPT or REJECT.

◮ If h = h′ then ACCEPT else REJECT.

Definition

A symmetric-key encryption scheme
Π is indistinguishable under chosen
ciphertext attack
iff
for each probabilistic
polynomial-time attacker A the
advantage

advIND-CCA(A) =
∣∣∣∣prob

(
GIND-CCA(A) = ACCEPT

)
− 1

2

∣∣∣∣

is negligible.

(2015-12-17) 116+121

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Ciphertext Attacks (IND-CCA)

Fact

Each encryption scheme seen so far is not IND-CCA secure.

Lemma

◮ IND-CCA secure ⇒ IND-CPA secure.

◮ IND-CPA secure ⇒ IND-POA secure.

Consequently, no deterministic scheme can be IND-CCA secure.

Exercise

Prove the fact for the non-deterministic schemes Πrand
F .

(2015-12-17) 117+120

Symmetric-Key Encryption and Pseudorandomness, II:
Security Against Chosen-Ciphertext Attacks (IND-CCA)

Security landscape

P
O

A

P
C
A

C
P
A

C
C
A

UBK

OW

IND

NM

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•• •

•

•

?

(2015-12-17) 118+119

Section 7 Overview

Symmetric-Key Encryption and Pseudorandomness, I

Practical Constructions of Block Ciphers

Symmetric-Key Encryption and Pseudorandomness, II

MACs and Collision-Resistant Hash Functions
MACs — Definitions
Constructing Secure MACs
CBC-MAC
*Collision-Resistant Hash Functions
*NMAC and HMAC
Constructing CCA-Secure Encryption Schemes
Obtaining Privacy and Message Authentication
AEAD, LHAE, . . .

(2015-12-21) 119+118

MACs and Collision-Resistant Hash Functions:
MACs — Definitions

KeyGen

Mac Vrfy

1κ

m

{
TRUE

FALSE
t

◮ Correctness: Vrfyk(m,Mack(m)) = TRUE.

◮ Efficiency: probabilistic polynomial-time.

◮ Security: Each fast attacker has at most a small advantage in
the Mac forge game GMAC (see next frame).

(2015-12-21) 120+117

MACs and Collision-Resistant Hash Functions:
MACs — Definitions

Mac forge game GMAC

◮ Prepare a key k ← KeyGen(1κ)
in K.

◮ Prepare a tagging oracle OMAC.
When called with m ∈ M the
oracle returns t← Mack(m).

◮ Call the attacker A with input 1κ

and the oracle OMac. Await a
pair (m∗, t∗).

◮ If the tagging oracle has been
called with input m∗

then REJECT.
◮ If Vrfyk(m

∗, t∗) = TRUE
then ACCEPT else REJECT.

Definition

A (symmetric-key) message
authentication
scheme Π = (KeyGen,Mac,Vrfy) is
existentially unforgeable under a
(adaptive) chosen-message attack
(EUF-CMA secure)
iff
for each probabilistic polynomial-time
attacker A the success probability

succMAC(A) =
prob

(
GMAC(A) = ACCEPT

)

is negligible.

(2015-12-21) 121+116

MACs and Collision-Resistant Hash Functions:
MACs — Definitions

Discussion

◮ Strong!

◮ Too much? Consider only ‘meaningful’ messages?
No, we must have application independence.

◮ Replay attacks?
The Mac does not help against these.

(2015-12-21) 122+115

MACs and Collision-Resistant Hash Functions:
Constructing Secure MACs

Message Authentication Scheme Πmac,short
F

Let F : {0, 1}κ → {{0, 1}κ → {0, 1}κ} be a pseudorandom
function.

KeyGen

Input: 1κ.
Output: k ∈ {0, 1}κ.

◮ k ←− {0, 1}κ.

Mac

Input: k, m.
Output: t.

◮ Return t← Fk(m).

Vrfy

Input: k, m, t.
Output: TRUE or FALSE.

◮ If t = Fk(m) return TRUE
else return FALSE.

(2015-12-21) 123+114

MACs and Collision-Resistant Hash Functions:
Constructing Secure MACs

Message Authentication Scheme Πmac,short
F

Pro:

Theorem

F pseudorandom function ⇒ Πmac,short
F is EUF-CMA secure.

Con:

◮ Works only for very short messages.

(2015-12-21) 124+113

MACs and Collision-Resistant Hash Functions:
Constructing Secure MACs

Long Message Authentication Scheme?

Options:

◮ Use tag on XOR of message blocks.
Easily broken by XORing two blocks with the same. . .

◮ Authenticate each block separately.
Easily broken by swapping two blocks. . .

◮ Authenticate each block along with a sequence number.
Easily broken by dropping final block(s). . .

◮ Authenticate each block along with a random id, the total
length and a sequence number.
Works!

(2015-12-21) 125+112

MACs and Collision-Resistant Hash Functions:
Constructing Secure MACs

Long Message Authentication Scheme Πmac,long
F

Mac

Input: k, m.
Output: t.

◮ Let ℓ← length(m), d←
⌈
4ℓ
κ

⌉
.

◮ If ℓ ≥ 2
κ
4 then FAIL.

◮ Parse m0| . . . |md−1 ← m|0 . . . 0 with mi ∈ {0, 1}
κ
4 .

◮ Choose r←−− {0, 1}κ
4 .

◮ For i ∈ N<d compute ti ← Fk(r|ℓ|i|mi) encoding ℓ, i ∈ {0, 1}κ
4 .

◮ Return [r, t0, . . . , td−1]

KeyGen: as before.
Vrfy: obvious.

(2015-12-21) 126+111

MACs and Collision-Resistant Hash Functions:
Constructing Secure MACs

Long Message Authentication Scheme Πmac,long
F

Theorem

F pseudorandom function ⇒ Πmac,long
F is EUF-CMA secure.

(2015-12-21) 127+110

MACs and Collision-Resistant Hash Functions:
CBC-MAC

Fixed-length CBC-MAC Πcbc-mac, fixed-length
F

0

t0

m1

⊕

Fk

t1

m2

⊕

Fk

t2

m3

⊕

Fk

t3

m4

⊕

Fk

t4

Mac

Input: k ∈ {0, 1}κ, m ∈ {0, 1}κ·ℓ(κ).
Output: t ∈ {0, 1}κ.

◮ Parse m0| . . . |mℓ(κ)−1 ← m with mi ∈ {0, 1}κ.
◮ Let t0 = 0κ ∈ {0, 1}κ.
◮ For i ∈ N<d compute ti ← Fk(ti−1 ⊕mi).
◮ Return td−1.

KeyGen: as before.
Vrfy: obvious.

(2015-12-21) 128+109

MACs and Collision-Resistant Hash Functions:
CBC-MAC

Fixed-length CBC-MAC Πcbc-mac, fixed-length
F

Theorem

F pseudorandom function ⇒ Πcbc-mac, fixed-length
F is EUF-CMA

secure.

◮ The IV t0 is fixed. This is crucial!

◮ Only td−1 is output. This is also crucial.

◮ Warning: When combining with an encryption, you must use
an independent key.

Exercise
For the security of CBC-MAC and variants consider M. Bellare, J. Kilian and P. Rogaway.
The security of the cipher block chaining message authentication code. JCSS 61(3):362–399, 2000.

(2015-12-21) 129+108

https://cseweb.ucsd.edu/~mihir/papers/cbc.pdf

MACs and Collision-Resistant Hash Functions:
CBC-MAC

Variable-length CBC-MAC Πcbc-mac, variable-length
F

0

t0

m1

⊕

Fk

t1

m2

⊕

Fk

t2

m3

⊕

Fk

t3

m4

⊕

Fk

t4

To achieve a variable length CBC-MAC you can. . .

◮ . . . use a length dependent key: kℓ ← Fk(ℓ),
compute the fixed-length CBC-MAC with this
key.

◮ . . . prepend the message length to the message encoded as a
κ-bit string and compute the fixed-length CBC-MAC of that
extended message. (Postpending is a bad idea!)

◮ . . . derive two keys k1, k2 ∈ {0, 1}κ. Compute the fixed-length
CBC-MAC with k1 and return Fk2(td−1).

(2015-12-21) 130+107

MACs and Collision-Resistant Hash Functions:
CBC-MAC

Standardized variants of CBC-MAC Πcbc-mac
F

◮ CMAC (NIST, FIPS PUB 113): XORs last (padded) block
with a modified key before computing the Fixed-length
CBC-MAC Πcbc-mac, fixed-length

F .

◮ RFC 3610: specififies CCM which is AES in CTR mode plus a
length-prepended CBC-MAC for messages up to 264 − 1 bytes
(16 exbi bytes).*,PDF

◮ ISO/IEC 9797-1: specifies 3 paddings and 6 MAC variants.

(2015-12-21) 131+106

https://tools.ietf.org/html/rfc3610
http://dx.doi.org/10.1007/3-540-36492-7_7
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/ccm-ad1.pdf
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=50375

MACs and Collision-Resistant Hash Functions:
*Collision-Resistant Hash Functions

Definition

A cryptographic(!) hash function is a collision-resistant, one-way

function hκ : {0, 1}∗ → {0, 1}ℓ(κ). . . .

Candidates

◮ MD5 (ℓ = 128, collisions found),

◮ SHA-1 (ℓ = 160, security at most 63 bits),

◮ SHA-224 . . . SHA-512 (ℓ ∈ {224, 256, 384, 512}),
◮ SHA-3 (Keccak, 1600 internal bits, ℓ ∈ {224, 256, 384, 512}),
◮ BLAKE, Grøstl, JH, Skein,

◮ Whirlpool, RIPEMD, . . .

(2015-12-21) 132+105

MACs and Collision-Resistant Hash Functions:
*NMAC and HMAC

Definition (HMAC-h)

Let h be a hash function.
We define the tag generation for HMAC-h as follows: Use the hash
function on (k ⊕ ipad)|m to otain an intermediate hash value t′.
Then apply the hash function again on (k ⊕ opad)|t′ to obtain the
HMAC tag t. . . .

Theorem

If . . . then HMAC-h is EUF-CMA secure for fixed-length messages.

(2015-12-21) 133+104

MACs and Collision-Resistant Hash Functions:
Constructing CCA-Secure Encryption Schemes

Let ΠE = (KeyGenE ,Enc,Dec) be a symmetric-key encryption scheme
and ΠM = (KeyGenM ,Mac,Vrfy) be a message authentication code.
Define EtA (Encrypt-then-Authenticate) as follows

KeyGen

Input: 1κ.
Output: k ∈ {0, 1}κ × {0, 1}κ.

◮ k ← [KeyGenE(κ),KeyGenM (κ)].

Enc

Input: [kE , kM], m.
Output: [c, t].

◮ Compute c← EnckE(m).
◮ Compute t← MackM (c).
◮ Return [c, t].

Dec

Input: [kE , kM], [c, t].
Output: m′ or FAIL

◮ If VrfykM (c, t) = FALSE
then return FAIL.

◮ m′ ← DeckE(c).
◮ Return m′.

(2015-12-21) 134+103

MACs and Collision-Resistant Hash Functions:
Obtaining Privacy and Message Authentication

◮ Encrypt then Authenticate (EtA) — IPSec.

◮ Authenticate then Encrypt (AtE) — TLS/SSL.
. . . data . . .

T versionlength plaintext

sequence number T versionlength plaintext

T versionlength plaintext MAC padding

T versionlength ciphertext

fragment

compress

mac

encrypt

◮ Encrypt and Authenticate (E&A) — SSH.

◮ . . .

(2015-12-21) 135+102

MACs and Collision-Resistant Hash Functions:
AEAD, LHAE, . . .

LHAE Game

Input: κ.
Output: ACCEPTor REJECT.

◮ k ←− AE.Keygen(1κ).
◮ hAE ←− {0, 1}.
◮ Invoke the player with input

(Oenc,Odec) to obtain a
bit h′AE.

◮ If hAE = h′AE

then return ACCEPT
else return REJECT.

advLHAE(P) =
∣∣∣∣prob (P wins the LHAE game)− 1

2

∣∣∣∣ .

Oenc

Input: ℓ, H, m0, m1.
Output: c0, c1 or FAIL.

◮ c0 ← AE.Enc(k, ℓ,H,m0).
◮ c1 ← AE.Enc(k, ℓ,H,m1).
◮ If c0 = FAIL or c1 = FAIL then return FAIL.
◮ return chAE

.

Odec

Input: H, c.
Output: m.

◮ If hAE = 0 then return FAIL.
◮ m← AE.Dec(k,H, c).
◮ If c was created by Oenc then return FAIL.
◮ return m.

(2015-12-21) 136+101

Symmetric-Key Cryptography:
Summary

◮ Symmetric-key encryption,
landscape.

◮ Practical constructions:
AES, DES.

◮ Message authentication
codes.

◮ IND-CCA security,
authenticated encryption.

P
O

A

P
C
A

C
P
A

C
C
A

UBK

OW

IND

NM

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

137+100

Part II

Public-Key Cryptography

Symmetric-Key Management and Public-Key Revolution

Public-Key Encryption I

Number Theory

Factoring and Computing Discrete Logarithms

Public-Key Encryption, II

*Additional Public-Key Encryption Schemes

138+99

Section 8 Overview

Symmetric-Key Management and Public-Key Revolution
Limitations of Symmetric-Key Cryptography
A Partial Solution — Key Distribution Centers
Diffie-Hellman Key Exchange
Real-or-random security
Security and Insecurity of Diffie-Hellman Key Exchange
The Public-Key Revolution

Public-Key Encryption I

Number Theory

Factoring and Computing Discrete Logarithms

Public-Key Encryption, II

*Additional Public-Key Encryption Schemes

Digital Signature Schemes

*Public-Key Cryptosystems in the Random Oracle Model

(2016-01-07) 139+98

Symmetric-Key Management and Public-Key Revolution:
Limitations of Symmetric-Key Cryptography

Problem: Key distribution

◮ New party joins a team: n− 1 new keys have to be
distributed. One key with each ‘old’ party.

◮ Party leaves: n− 1 keys have to be deleted.

Partial solution: Your IT admin creates n− 1 keys and gives one to
each old party and all to the new party. But. . .

(2016-01-07) 140+97

Symmetric-Key Management and Public-Key Revolution:
Limitations of Symmetric-Key Cryptography

Problem: Key storage and secrecy

◮ Each party must store n− 1 secret keys.

◮ New party: each party must add a key to that list.
Party leaves: each party must delete a key from the list.

◮ The storage must be secure!

◮ Some keys may be shared by many, eg. for access to a
database.

Partial solution: key distribution center. (See later.)

(2016-01-07) 141+96

Symmetric-Key Management and Public-Key Revolution:
Limitations of Symmetric-Key Cryptography

Problem: Open systems

◮ New party: possibly remote. No secret channel.

(2016-01-07) 142+95

Symmetric-Key Management and Public-Key Revolution:
A Partial Solution — Key Distribution Centers

Alice Bob

KDC

Here’s Alice.
Can I talk to Bob?

EAlice(k), EBob(k)

EBob(k)

(2016-01-07) 143+94

Symmetric-Key Management and Public-Key Revolution:
A Partial Solution — Key Distribution Centers

Pro

◮ Each party needs only a single key, namely with the KDC.

◮ New party:
◮ Only one new key, only with KDC.
◮ No other party need to act.

◮ Party leave: delete key at KDC.

◮ KDC is not locked by having to wait for Bob.

Con

◮ Single point of failure for safety/reliability: if KDC is offline,
no connection can be started.

◮ Single point of failure for security: Successful attack at KDC
breaks all.

(2016-01-07) 144+93

Symmetric-Key Management and Public-Key Revolution:
A Partial Solution — Key Distribution Centers

In practice:

◮ Needham-Schroeder protocol in the symmetric-key variant.

◮ Kerberos.

◮ Also: Needham-Schroeder protocol in the public-key variant.

Warning: IND-CPA security is not enough!

(2016-01-07) 145+92

Symmetric-Key Management and Public-Key Revolution:
Diffie-Hellman Key Exchange

(2016-01-07) 146+91

Symmetric-Key Management and Public-Key Revolution:
Diffie-Hellman Key Exchange

Based on κ fix a group (G, ·) and an element g ∈ G of order q.

1κ, (G, ·), g, q

Alice Bob

a←− Zq b←− Zq

A← ga A

B ← gbB

k ← Ba
k′ ← Ab

◮ Correctness: k = gab = k′.
◮ Efficiency: ok, if the group operation is. Square and multiply. . .

◮ Security: . . .

(2016-01-07) 147+90

Symmetric-Key Management and Public-Key Revolution:
Diffie-Hellman Key Exchange

Security

◮ Necessary: the discrete logarithm problem,
namely given gx find x, is hard.

◮ Necessary: the Diffie-Hellman problem relative to g,
namely given ga, gb find gab, is hard.

◮ Necessary: the Decisional Diffie-Hellman problem relative to g,
namely given ga, gb, gc decide whether c = ab, is hard.

◮ Under certain assumption. . .

(2016-01-07) 148+89

Symmetric-Key Management and Public-Key Revolution:
Real-or-random security

Real-or-random game GROR-POA
Π

◮ Choose parameters π ← Gen(1κ) (mostly not randomized).
◮ Let Alice and Bob given the parameters π execute the key exchange

protocol Π. We obtain the transcript t and the shared key k0.
◮ Pick a random key k1 ←− Kπ.
◮ Pick a hidden bit h←− {0, 1}.
◮ Call the attacker with the parameters π, the transcript t and kh. Await a

guess h′ ∈ {0, 1}.
◮ If h′ = h then ACCEPT else REJECT.

advROR-POA
Π (A) :=

∣∣∣∣prob
(
GROR-POA

Π (A) = ACCEPT
)
− 1

2

∣∣∣∣

Definition

A key exchange Π is ROR-POA secure iff . . .

(2016-01-11) 149+88

Symmetric-Key Management and Public-Key Revolution:
Security and Insecurity of Diffie-Hellman Key Exchange

Decisional Diffie-Hellman Game

◮ Pick π = (G, ·, g, q) ← Gen(1κ).
◮ Choose a, b, c1 ←− Zq, compute c0 = ab.
◮ Pick a hidden bit h←− {0, 1}.
◮ Call the player with ga, gb, gch . Await a guess h′ ∈ {0, 1}.
◮ If h′ = h then ACCEPT else REJECT.

Theorem

If the Decisional Diffie-Hellman problem is hard
then the Diffie-Hellman key exchange is ROR-POA secure.

(2016-01-11) 150+87

Symmetric-Key Management and Public-Key Revolution:
Security and Insecurity of Diffie-Hellman Key Exchange

Moderator-in-the-middle

Alice Bob

a←− Zq b←− Zq

Mo

ga

gb

b̃, ã ∈ Zq

gã

gb̃

k ← (gb̃)a k′ ← (gã)bk ← (ga)b̃, k′ ← (gb)ã

Theorem

Basic Diffie-Hellman is never secure against an active attacker.

(2016-01-11) 151+86

Symmetric-Key Management and Public-Key Revolution:
The Public-Key Revolution

CESG (1970–1974).
1970/05 ◮ Ellis (1970). The possibility of secure non-secret digital encryption.
1973/11 ◮

Wikipedia

Cocks (1973). A note on ‘non-secret encryption’. [≈ RSA]
1974/01 ◮ Williamson (1974). Non-secret encryption using a finite field. [≈ DH]

1976/11

Wikipedia

Diffie & Hellman (1976). New directions in
cryptography.

◮ Notion asymmetric key exchange.
◮ Solution: Diffie-Hellman key exchange in Z×

p .
◮ Notion public-key encryption.
◮ Notion public-key signatures.

1977/04

WikipediaWikipedia

Rivest, Shamir & Adleman (1978). A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems.

◮ Solutions for asymmetric encryption and signatures.

All these systems use pairs consisting of a public and a private key.11

11Enjoy https://www.youtube.com/watch?v=U62S8SchxX4.
(2016-01-11) 152+85

https://en.wikipedia.org/wiki/File:Clifford-Cocks-FRS.jpg
https://commons.wikimedia.org/wiki/File:Diffie_and_Hellman.jpg
https://commons.wikimedia.org/wiki/File:Ronald_L_Rivest_photo.jpg
https://commons.wikimedia.org/wiki/File:Adi_Shamir_2009_crop.jpg
https://www.youtube.com/watch?v=U62S8SchxX4

Symmetric-Key Management and Public-Key Revolution:
The Public-Key Revolution

New primitives

◮ Public-key encryption.

◮ Public-key signatures.

◮ Interactive key exchange:

Theorem (DH, passive)

DDH hard ⇒ Diffie-Hellman key exchange ROR-POA secure.

Theorem (DH, active)

Basic Diffie-Hellman is never secure against an active attacker.

(2016-01-14) 153+84

Symmetric-Key Management and Public-Key Revolution:
The Public-Key Revolution

Blackbox view, symmetric

◮ Symmetric-key encryption:

KeyGen

Enc Dec

1κ

m m′c

◮ Message authentication:

KeyGen

Mac Vrfy

1κ

m

{
TRUE

FALSE
t

(2016-01-14) 154+83

Symmetric-Key Management and Public-Key Revolution:
The Public-Key Revolution

Blackbox view, asymmetric

◮ Public-key encryption:

KeyGen

Enc Dec

1κ

m m′c

◮ Public-key signature:

KeyGen

Sign Vrfy

1κ

m

{
TRUE

FALSE
s

(2016-01-14) 154+83

Section 9 Overview

Symmetric-Key Management and Public-Key Revolution

Public-Key Encryption I
RSA

Number Theory

Factoring and Computing Discrete Logarithms

Public-Key Encryption, II

*Additional Public-Key Encryption Schemes

Digital Signature Schemes

*Public-Key Cryptosystems in the Random Oracle Model
(2016-01-14) 155+82

Public-Key Encryption I:
RSA

1κ

Alice BobEve

p, q ←−− P with
2κ−1 ≤ p · q < 2κ and. . .

N ← p · q.
L← (p−1) ·(q−1).
Choose e, d ∈ N with
e · d = 1 in ZL.

(N, e)

c← me in ZN c

m′ ← cd in ZN

Correctness: Do we always have m′ = m?
Efficiency: Everything probabilistic polynomial-time?
Security: ??? . . .

(2016-01-14) 156+81

Public-Key Encryption I:
RSA

KeyGen

Input: 1κ.
Output: A public key (N, e) ∈ N× N,

a private key (N, d) ∈ N× N.

◮ Pick p, q ←− P with 2κ−1 ≤ p · q < 2κ and. . .
◮ Compute N ← p · q.
◮ Compute L← (p − 1) · (q − 1).
◮ Pick e, d ∈ N with e · d = 1 in ZL.

Enc

Input: (N, e) ∈ N× N,
m ∈ ZN .

Output: c ∈ ZN .

◮ c← me in ZN .

Dec

Input: (N, d) ∈ N×N,
c ∈ ZN .

Output: m′ ∈ ZN .

◮ m′ ← cd in ZN .

(2016-01-14) 157+80

Public-Key Encryption I:
RSA, toy example

KeyGen

Input: 110.
Output: (N, e) = (899, 191), (N, d) = (899, 431).

◮ Pick p, q ←− {17, 19, 23, 29, 31}, say p← 31, q ← 29.
◮ Compute N ← 899 = 31 · 29.
◮ Compute L← 840 = 30 · 28.
◮ Pick e, d ∈ N with e · d = 1 in ZL. Say e = 191, d = 431.

Enc

Input: (N, e) = (899, 191),
m = 2 ∈ ZN .

Output: c ∈ ZN .

◮ c← me = 2191 = 126
in Z899.

Dec

Input: (N, d) = (899, 431),
c = 126 ∈ ZN .

Output: m′ ∈ ZN .

◮ m′ ← cd = 126431 = 2
in Z899.

(2016-01-14) 158+79

Section 10 Overview

Symmetric-Key Management and Public-Key Revolution

Public-Key Encryption I

Number Theory
Preliminaries

The integers Z
(G, ·) commutative group: PANIC
(R,+, ·) comm. ring: PANIC+, PAN C·, D0N1T
Division with remainder
Extended Euclidean Algorithm
Divisibility and greatest common divisor
Divisibility and primes

Modular arithmetic
The ring of integers modulo N

Inverses
The group Z×

N of invertible elements
Chinese Remainder Theorem

Groups
Exponentiation
Exponentiation algorithm

RSA, revisited
Generate random primes

Density of primes
Probabilistic compositeness test
The Miller Rabin test

RSA, revisited

Factoring and Computing Discrete Logarithms

Public-Key Encryption, II

*Additional Public-Key Encryption Schemes

Digital Signature Schemes

*Public-Key Cryptosystems in the Random Oracle Model

(2016-01-14) 159+78

Number Theory:
Preliminaries

The integers Z

◮ Set {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }, zero 0, successor ·+ 1.

◮ Addition a+ 0 = a, a+ (b+ 1) = (a+ b) + 1, . . .

◮ Multiplication a · 0 = 0, a · 1 = a, a · (b+ 1) = a · b+ a, . . .

(2016-01-14) 160+77

Number Theory:
Preliminaries

(G, ·) commutative group: PANIC

P roperly defined: G is a set, and · : G×G→ G is a well
defined map.

A ssociative: for each a, b, c ∈ G we have (a · b) · c = a · (b · c).
Computer scientist may type: ·(·(a, b), c) = ·(a, ·(b, c))
considering · as the procedure executing the map.

N eutral element: there exists a (unique) element 1 ∈ G such
that for each a ∈ G we have 1 · a = a and a · 1 = a.

I nverses: for each a ∈ G there is a (unique) b ∈ G with
a · b = 1 and b · a = 1.

C ommutative: for each a, b ∈ G we have a · b = b · a.

(2016-01-14) 161+76

Number Theory:
Preliminaries

(G, ·) commutative group: PANIC

Examples include:

◮ (R,+), (R \ {0} , ·), (Q,+), (Q \ {0} , ·).
◮ (Z,+).

◮ (ZN ,+), (Z×N , ·) where N ∈ N≥2.

◮ (Fq,+), (F×q , ·) where q is a prime power.

◮ Elliptic curve groups (E,+).
◮ Given q an odd prime power, a, b ∈ Fq with 4a3 + 27b2 6= 0

define:
◮ the set E =

{

[x, y] ∈ F2
q y2 = x3 + ax+ b

}

∪̇ {O} and
◮ the operation + is defined such that given three distinct

points P , Q, R of E on a line in F2
q we have P +Q+R = O

and O is the neutral element. Any line passes through O iff it
is a vertical line.

(2016-01-14) 162+75

Number Theory:
Preliminaries

(R,+, ·) comm. ring: PANIC+, PAN C·, D0N1T

PANIC+ (R,+) PANIC.

PAN C· (R \ {0} , ·) PAN C.

D istributive: a · (b+ c) = a · b+ a · c and
(a+ b) · c = a · c+ b · c.

0N1T 0 6= 1.

Examples include:

◮ (R,+, ·), any field.

◮ (Z,+, ·).
◮ Ring (ZN ,+, ·) of integers modulo N .

◮ Ring (R[x],+, ·) of univariate polynomials.

(2016-01-14) 163+74

Number Theory:
Preliminaries

Division with remainder

Theorem

Let a ∈ Z, b ∈ Z>0. Then there exist unique integers q, r ∈ Z with

◮ a = q · b+ r and
◮ 0 ≤ r < b.

Example: 108 = 2 · 42 + 24, 0 ≤ 24 < 42.

Definition

Given a, b ∈ Z, b 6= 0. Let q, r ∈ Z be as in the Theorem. We define

a rem b := r.

Example: 108 rem 42 = 24.
Notice: a rem b ∈ Z.

(2016-01-14) 164+73

Number Theory:
Preliminaries

Extended Euclidean Algorithm

Example

On input a = 108,
b = 42 we fill the table

i ri qi si ti
0 108 1 0
1 42 2 0 1
2 24 1 1 −2
3 18 1 −1 3
4 6 3 2 −5
5 0 −7 18

Definition

Initialize ℓ = 0,
r0 = a, s0 = 1, t0 = 0,
r1 = b, s1 = 0, t1 = 1.
Until rℓ+1 = 0 repeat

◮ Increment ℓ and execute division
with remainder rℓ−1 = qℓrℓ + rℓ+1.

◮ sℓ+1 ← sℓ−1 − qℓsℓ.
◮ tℓ+1 ← tℓ−1 − qℓtℓ.

Return (rℓ, sℓ, tℓ).

Fact

Each row has ri = sia+ tib.

(2016-01-14) 165+72

Number Theory:
Preliminaries

Divisibility and greatest common divisor
◮ Given two numbers a, b we say that a|b (a divides b) iff ∃c : b = ca.
◮ A number g is a greatest common divisor of two numbers a, b iff

◮ it is a common divisor: g | a, g | b, and
◮ any common divisor t divides it: t | a ∧ t | b =⇒ t | g.

Theorem

Given a, b ∈ Z, b 6= 0. Then there exist g, s, t ∈ Z such that

g = sa+ tb

and g is a greatest common divisor of a and b.

Moreover, the Extended Euclidean Algorithm outputs (g, s, t) after
at most O

(
κ3
)

bit operations12.
12Actually, even within O

(

κ2
)

(2016-01-18) 166+71

Number Theory:
Preliminaries

Divisibility and primes

(0) A number a is invertible iff ∃b : a · b = 1.
(1) A non-invertible number a is indecomposable iff in each factorization

a = b · c (exactly) one of b, c is invertible.
(1’) A non-invertible number p is prime iff p | ab ⇒ p | a ∨ p | b.

(2+) A number a is composite iff there exists a factorization a = b · c with
both b, c not invertible.

Lemma

◮ If c | ab and gcd(a, c) = 1 then c | b.
◮ If a number p is indecomposable then p is prime.

Theorem

If a | N and b | N and gcd(a, b) = 1 then ab | N .

(2016-01-18) 167+70

Number Theory:
Modular arithmetic

The ring of integers modulo N

For N > 1 we define ZN = (ZN ,+, ·) by:

◮ Set ZN = {0, 1, . . . , N − 1} = Z≥0,<N .

◮ Addition a+ b = ZN((a+Z b) remN).

◮ Multipliation a · b = ZN ((a ·Z b) remN).

Definition

For a ∈ Z we define

amodN := ZN (a remN).

Notice: amodN ∈ ZN vs. a remN ∈ Z. Actually, modN is a
map respecting the ring structure, modN : Z→ ZN .

(2016-01-18) 168+69

Number Theory:
Modular arithmetic

Inverses

Theorem

Given a,N ∈ Z, N > 1. Then

amodN ∈ ZN is invertible ⇐⇒ gcd(a,N) = 1.

Moreover, we can decide this and compute the inverse using the
Extended Euclidean Algorithm13.

13Namely with input a, N , output (g, s, t) with g = sa+ tN , g = gcd(a,N).
If g = 1 then a is invertible with inverse s. . . .

(2016-01-18) 169+68

Number Theory:
Modular arithmetic

The group Z×N of invertible elements

Definition

Define the multiplicative ‘group’ Z×N of the ring ZN by

◮ Set Z×N = {x ∈ ZN x invertible}.
◮ Operation: Multiplication ·, inherited from ZN .

The Euler totient function ϕ measures its size, ϕ(N) := #Z×N .

Corollary

Z×N = {x ∈ ZN gcd(x,N) = 1}.

Fact

Z×N = (Z×N , ·) is a commutative group.

(2016-01-18) 170+67

Number Theory:
Modular arithmetic

Note that, given any P,Q > 1, ZP × ZQ is a ring.

Theorem (Chinese Remainder Theorem)

Let N = P ·Q with gcd(P,Q) = 1. Then

ZN −→ ZP × ZQ,
amodN 7−→ [amodP, amodQ]

is an isomorphism respecting the ring structures.
Moreover, the inverse can be computed based on the Extended
Euclidean Algorithm.14

14Namely, with input P , Q and output (g, s, t) with g = sP + tQ.
By assumption g = gcd(P,Q) = 1 and thus 1 = sP + tQ. Noticing that
sP = 0 in ZP and sP = 1 in ZQ, we find that (a0, a1) 7→ a0tQ+ a1sP

describes the inverse map.
(2016-01-18) 171+66

Number Theory:
Modular arithmetic

Example

Consider Z15
∼= Z3 × Z5:

Z15 Z5

0 1 2 3 4

0 0 6 12 3 9
Z3 1 10 1 7 13 4

2 5 11 2 8 14
Z
×

3

Z
×

5

Z
×

15

Algebra is respected, eg.

◮ invertible elements, ie. x with ∃y : x · y = 1:
Z×15
∼= Z×3 × Z×5 .

◮ roots of 1, ie. x with x2 = 1:
{1, 4, 11, 14} ∼= {1, 2} × {1, 4}.

(2016-01-18) 172+65

Number Theory:
Modular arithmetic

Corollary

Let N = P ·Q with gcd(P,Q) = 1.
Then Z×N

∼= Z×P × Z×Q and ϕ(N) = ϕ(P) · ϕ(Q).

Fact

◮ ϕ(p) = p− 1 for p prime.

◮ ϕ(p · q) = (p− 1) · (q − 1) for p, q distinct primes.

◮

ϕ(N) = N
∏

p|N,
p prime

p− 1

p
.

Note: To compute ϕ(N) you need its prime divisors.

(2016-01-18) 173+64

Number Theory:
Groups

Exponentiation

Let (G, ·) be a group, m ∈ N. Then we define gm = 1 iff m = 0
and gm = gm−1 · g otherwise. That is,

gm = g · . . . · g︸ ︷︷ ︸
m times

For an additively written group (G,+), we prefer to write

m · g := g + . . .+ g︸ ︷︷ ︸
m times

(2016-01-18) 174+63

Number Theory:
Groups

Exponentiation

Theorem (Lagrange)

Consider a finite group G of size m = #G and an element g ∈ G.
Then

gm = 1.

Corollary

In the situation of the Theorem, for any i ∈ Z we have
gi = gi remm. Consequently, we have a map

expg :
Zm −→ G,

i 7−→ gi,

respecting the group structure.
(2016-01-18) 175+62

Number Theory:
Groups

Exponentiation

Theorem (Euler)

Consider N > 1 and an element g ∈ N<N with gcd(g,N) = 1.
Then

gϕ(N) = 1 in ZN .

Theorem (Fermat)

Consider a prime p and an element g ∈ N, 0 < g < p. Then

gp−1 = 1 in Zp.

(2016-01-18) 176+61

Number Theory:
Groups

Exponentiation algorithm

Cost of one multiplication in ZN for a κ-bit integer N :

◮ School method: O
(
κ2
)
.

◮ Karatsuba: O
(
κlog2 3

)
= O

(
κ1.59

)
[divide&conquer].

◮ Schönhage & Strassen (1971): O (κ · log κ · log logκ) [FFT].

◮ Fürer (2007), Anindya De, Chandan Saha, Piyush Kurur and
Ramprasad Saptharishi (2008): O

(
κ · logκ · 2log∗ κ

)
.

Cost of one exponentiation in a (half) group G:

◮ Definition: #G multiplications in G.

◮ Square and multiply: 2 log2#G multiplications in G.

Together: one exponention in ZN costs at most O
(
κ3
)
.

Note: It is important that every multiplication during the
exponentiation is carried out in ZN .

(2016-01-21) 177+60

Number Theory:
RSA, revisited

With the previous we can almost completely implement RSA:

KeyGen

Input: 1κ.
Output: (N, e) ∈ N× N, (N, d) ∈ N× N.

◮ Pick p, q ←− P with 2κ−1 ≤ p · q < 2κ and. . .
◮ Compute N ← p · q.
◮ Compute L← (p− 1) · (q − 1).
◮ Pick e, d ∈ N with e · d = 1 in ZL.

Enc

Input: (N, e) ∈ N× N, m ∈ ZN .
Output: c ∈ ZN .

◮ c← me in ZN .

Dec

Input: (N, d) ∈ N× N, c ∈ ZN .
Output: m′ ∈ ZN .

◮ m′ ← cd in ZN .

XO
(
κ2
)

XO
(
κ2
)

XO
(
κ3
)

XO
(
κ3
)

XO
(
κ3
)

???

(2016-01-21) 178+59

Number Theory:
Generate random primes

GeneratePrime

Input: 1κ.
Output: p.

◮ Repeat
◮ Pick a random κ-bit integer p←−− N.

◮ Until p is prime

This splits the task in two parts:

◮ How many iterations of the loop do we need?

◮ What is the cost of one prime test?

(2016-01-21) 179+58

Number Theory:
Generate random primes

Density of primes
Denote by π(x) the number of primes p with 0 < p < x.

Theorem (Prime Number Theorem)

◮ Chebyshev (1852): π(x) ∼ x
lnx

.

◮ Schoenfeld (1976): Iff the Riemann hypothesis holds

|π(x)− Li(x)| < 1

8π
lnx for x > 1451,

where Li x =
∫ x

2
1

ln t
dt ∼ x

lnx
+ x

ln2 x
+ 2 x

ln3 x
.

◮ Dusart (1998): For x ≥ 355991

x

lnx
+

x

ln2 x
+ 1.8

x

ln3 x
< π(x) <

x

lnx
+

x

ln2 x
+ 2.51

x

ln3 x
.

(2016-01-21) 180+57

Number Theory:
Generate random primes

Density of primes

Thus the density π(x)
x

of primes is roughly 1
lnx

.

Corollary

The number of iterations is O (κ).

Actually, asymptotically we expect ln 2κ = κ ln 2 iterations.

(2016-01-21) 181+56

Number Theory:
Generate random primes

Probabilistic compositeness test

The bet

At an Oberwolfach meeting in the 1970s, Volker Strassen and Ernst
Specker bet that a deterministic primality test will be found within
ten years. The winner would be paid a ballon ride.

Probabilistic compositeness tests

◮ Solovay & Strassen (1977).
◮ Miller (1976), Rabin (1980).

Deterministic primality test

◮ Agrawal, Kayal & Saxena (2002, +2004).
◮ Many improvements. . .

AKS was too late and so Ernst Specker won the bet and the ballon
ride.

O
(

κ3
)

O
(

κ3
)

O∼
(

κ12
)

O∼
(

κ6
)

(2016-01-21) 182+55

Number Theory:
Generate random primes

Probabilistic compositeness test

◮ For a prime p we have gp−1 = 1 in Zp.

◮ For a composite number N the condition gN−1 = 1 in ZN

holds for at most 1
4 of the values g.

◮ For primes p the polynomial equation x2 = 1 has at exactly
the two roots ±1 in Zp.

◮ For a composite number the polynomial equation x2 = 1 has
at least four roots in ZN .

Conclusion

If we find a g ∈ ZN with gN−1 6= 1 the candidate N is not prime.
If we find an element x ∈ ZN different from ±1 with x2 = 1 the
candidate N cannot be prime. And we can factor N .

(2016-01-21) 183+54

Number Theory:
Generate random primes

The Miller Rabin test

Miller Rabin test

Input: N ∈ N, t ∈ N.
Output: “composite” or “maybe prime”.

◮ If N is even return “composite” (with factor 2).
◮ If N is a perfect power return “composite” (with factor).
◮ Write N − 1 = 2ru.
◮ Repeat t times

◮ Pick a←−− ZN and compute [au, a2u, a2
2u, . . . , a2

ru] in ZN .
◮ If 1 is not on the list return “composite” (without factor).
◮ If for some 1 ≤ s ≤ r we find a2

s−1u 6= ±1 and a2
su = 1

then return “composite” (with factor).

◮ Return “maybe prime”.

(2016-01-21) 184+53

Number Theory:
Generate random primes

The Miller Rabin test

Theorem

◮ If p is prime then the Miller Rabin test always outputs “maybe
prime”.

◮ If p is composite then the Miller Rabin test outputs
“composite” with probability at least 1− 4−t.

The Miller Rabin test needs at most O
(
tκ3
)

bit operations to test
a κ-bit number N .

(2016-01-21) 185+52

Number Theory:
RSA, revisited

With the previous we can completely implement RSA:

KeyGen

Input: 1κ.
Output: (N, e) ∈ N× N, (N, d) ∈ N× N.

◮ Pick p, q ←− P with 2κ−1 ≤ p · q < 2κ and. . .
◮ Compute N ← p · q.
◮ Compute L← (p− 1) · (q − 1).
◮ Pick e, d ∈ N with e · d = 1 in ZL.

Enc

Input: (N, e) ∈ N× N, m ∈ ZN .
Output: c ∈ ZN .

◮ c← me in ZN .

Dec

Input: (N, d) ∈ N× N, c ∈ ZN .
Output: m′ ∈ ZN .

◮ m′ ← cd in ZN .

XO
(
κ2
)

XO
(
κ2
)

XO
(
κ3
)

XO
(
κ3
)

XO
(
κ3
)

XO
(
κ4
)

(2016-01-21) 186+51

Number Theory:
RSA, revisited

RSA is correct

◮ Recall that N = p · q, L = (p − 1)(q − 1).
◮ Encryption and decryption take place mostly in Z×N .
◮ Its size is ϕ(N). That equals L.
◮ We construct e, d such that e · d = 1 in ZL,

ie. d · e− t · L = 1 for some t ∈ Z.
◮ And Dec(N,d)(Enc(N,e)(x)) = (xe)d = xed in ZN .
◮ For x ∈ Z×p we know xp−1 = 1.

◮ Thus xed = x1+tL = x · (xp−1)t(q−1) = x in Zp.
◮ Also xed = x is true for x = 0 ∈ Zp.
◮ Similarly, xed = x for each x ∈ Zq.

◮ By the CRT then xed = x in ZN
∼= Zp × Zq.

◮ Thus RSA is correct!

(2016-01-21) 187+50

Number Theory:
RSA, revisited

Theorem

RSA is correct and efficient.

Security?

◮ Well, if the attacker finds the primes he got it all. . .

◮ So better, that should be hard, right?

◮ Thus we need: Factoring is hard.

(2016-01-21) 188+49

Section 11 Overview

Symmetric-Key Management and Public-Key Revolution

Public-Key Encryption I

Number Theory

Factoring and Computing Discrete Logarithms
Factoring is hard?
Algorithms for Factoring

Trial division
*Pollard’s p− 1 Method
Pollard’s ̺ Method
Dixon’s Quadratic Sieve Method
More and summary

Discrete logarithm is hard?
Algorithms for Computing Discrete Logarithms

Shanks’ Baby-Step Giant-Step Algorithm
Pollard’s ̺ Algorithm
The Pohlig & Hellman Algorithm
The Index Calculus Method
More and summary

Recommended Key Lengths

Public-Key Encryption, II

*Additional Public-Key Encryption Schemes

Digital Signature Schemes

*Public-Key Cryptosystems in the Random Oracle Model

(2016-01-21) 189+48

Factoring and Computing Discrete Logarithms:
Factoring is hard?

That is? Maybe this: Consider

Weak factoring experiment

Input: 1κ.
Output: ACCEPT or REJECT.

◮ Choose
⌈
κ
2

⌉
-bit integers x0, x1 ←− 2⌈κ2 ⌉−1..2⌈κ2 ⌉ − 1.

◮ Compute N = x0 · x1.
◮ Call the player A with input N and expect x′0, x

′
1 ∈ N>1.

◮ If x′0 · x′1 = N then ACCEPT else REJECT.

and call factoring hard iff each probabilistic polynomial-time attacker
A has at most negligible success probability.

Unfortunately: This is obviously wrong.
Restricting the attackers answer to x′0, x

′
1 ∈ N<2⌈κ⌉2 may be an

option. But still. . .
(2016-01-21) 190+47

Factoring and Computing Discrete Logarithms:
Factoring is hard?

Full factoring experiment

Input: 1κ.
Output: ACCEPT or REJECT.

◮ Choose a κ-bit number N ←− N with 2κ−1 ≤ N < 2κ.
◮ Call the player A with input N and

expect its output r, p0, . . . , pr−1, e0, . . . , er−1 ∈ N.

◮ If each pi is prime and N = pe00 · pe11 · · · · · p
er−1

r−1
then ACCEPT else REJECT.

Call factoring hard iff each probabilistic polynomial-time attacker A has at most negli-
gible success.

Irritating point: Is this game efficient?
Yes, even deterministically with AKS.

Even more irritating: Still bad since many numbers can be factored easily:

◮ Primes (probability ∼ 1
κ ln 2) or

◮ small multiples of primes (even more) or
◮ ‘smooth’ numbers with only very small prime divisor (few but still) or
◮ . . .

(2016-01-25) 191+46

Factoring and Computing Discrete Logarithms:
Factoring is hard?

Say GenPrimePair on 1κ outputs a pair (p, q) of primes.

Factoring experiment relative GenPrimePair

Input: 1κ.
Output: ACCEPT or REJECT.

◮ Choose primes by (p, q)← GenPrimePair(1κ).
◮ Compute N = p · q.
◮ Call the player A with input N and expect p′, q′ ∈ N.
◮ If p′ · q′ = N then ACCEPT else REJECT.

Call factoring hard relative GenPrimePair iff each probabilistic
polynomial-time attacker A has at most negligible success.

(2016-01-25) 192+45

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

Trial division

◮ To test a κ-bit number

N ∈ N,

2κ−1 ≤ N < 2κ, we can try whether some number t < N
divides N .

◮ Since each divisor has a counter part N = t · t′ and one of
them is necessarily smaller than the other, we only need to
consider t ≤

√
N .

◮ Each trial division takes time O
(
κ2
)
.

◮ Total time: O
(
2

κ
2 κ2
)
⊆ O∼

(√
N
)
.

(2016-01-25) 193+44

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

*Pollard’s p− 1 Method

Input: A number N ∈ N which is not prime and not a perfect power.
Output: A non-trivial divisor t ∈ N, t | N , 1 < t < N or FAIL.

◮ Put B ← ∏
p∈P,p<P (N) p

⌊logp N⌋.
◮ Choose x←− Z×N .
◮ y ← xB in ZN .
◮ p← gcd(y − 1, N).
◮ If p /∈ {1, N} then return p else return FAIL.

This works with a small B if for some prime divisor p of N p− 1 is smooth, ie. p− 1
has only small prime divisors.
If N = p · q for distinct primes p, q then for success we need that

◮ p− 1 | B and thus xB = 1 in Zp but
◮ q − 1 ∤ B and thus xB 6= 1 in Zq with some probability Ω

(
1
κ

)
.

Conclusion: Particularly good, if p− 1 is smooth.
Practice: Not used for crypto (but in GIMPS). But generalizes to Lenstra’s elliptic
curve factoring.

(2016-01-25) 194+43

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

Pollard’s (1978) ̺ Method for Factoring

◮ Pick numbers xi ←− ZN until gcd(xi − xj , N) is non-trivial.
◮ Birthday paradox: about O

(√
p
)

numbers until p | xi − xj .
◮ However, we need to check all pairs which spoils all efforts.
◮

Zp-view

bbbbbb
b

b

b
b
b b b b

b
b
b

bbbbb

x0

i = 6

The ̺: Constructing xi+1 ← F (xi) with some
deterministic function F : ZN → ZN , the se-
quence xi must eventually ‘collide’ with an older
xj . In our setting that means gcd(xi−xj, N) is
non-trivial.
People like F (x) = x2 + 1.

◮ But now only x0 random: heuristic. . .
◮ Finally, Floyd’s trick saves time (and memory):

we only need to consider the pairs x2i = F (F (x2(i−1)))
and xi = F (xi−1).

Runtime: Heuristic, expected O
(√

p
)

with the smallest prime√ (√) ()(2016-01-25) 195+42

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

Pollard’s ̺ Method

Input: A number N ∈ N.
Output: A non-trivial divisor t ∈ N, t | N , 1 < t < N

or N if it’s prime or FAIL.

◮ If N is prime return N .
◮ If N is a perfect power return corresponding root.
◮ Pick x0 ←− ZN .
◮ x← x0, x

′ ← x0.
◮ Repeat 4

√
N times

◮ x← F (x), x′ ← F (F (x′)).
◮ g ← | gcd(x′ − x,N)|.
◮ If g /∈ {1, N} return g.
◮ If g = N return FAIL.

◮ Return FAIL.

(2016-01-25) 196+41

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

Dixon’s Quadratic Sieve Method

Idea: If N is not prime, then x2 = 1 has at least four solutions.
Namely, by the CRT ZN

∼= Zp0 × Zp1 × Then we have trivial
solutions

◮ (+1,+1, . . .), which is +1,
◮ (−1,−1, . . .), which is −1,

and non-trivial solutions

◮ (+1,−1, . . .),
◮ (−1,+1, . . .).

Each non-trivial solution produces a proper factor of N :
gcd(x− 1, N).

Relaxed aim: Find x, y ∈ ZN with x2 = y2 or (x
y
)2 = 1. If this is

non-trivial, ie. x 6= ±y, then gcd(x− y,N) is a proper factor of N .
(2016-01-25) 197+40

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

Dixon’s Quadratic Sieve Method

Observation: The elements of ZN stem from elements of Z:
modN : Z→ ZN . And in Z we have unique factorization!

Let’s work it out:
Relation finding: Pick some x ∈ ZN , compute z ← x2 in ZN . Now,
pull z back to Z and write that as a product of primes, but we only
allow primes in some predetermined factor base Q ⊂ P, say
Q = {q0, q1, . . . , qr−1}. If successful, we call x good, push the
factorization back to ZN and obtain a relation

x2 = q
e0(x)
0 q

e1(x)
1 . . . q

er−1(x)
r−1 in ZN .

Well, if all exponents are even then we are done.

(2016-01-25) 198+39

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

Dixon’s Quadratic Sieve Method
Linear algebra: Given many such relations, we try to multiply some
of them to yield a right hand side with only even exponents. In
other words: we try to find a sum of some vectors
[e0(x), e1(x), . . . , er−1(x)]T that is zero modulo 2. That’s a linear
system with the sparse r × s-matrix

R =

e0(x0) e0(x1) e0(x2) . . . e0(xs−1)
e1(x0) e1(x1) e1(x2) . . . e1(xs−1)

...
...

...
...

er−1(x0) er−1(x1) er−1(x2) . . . er−1(xs−1)

over the field Z2. If s≫ r then we have a good chance that
R · v = 0 has a non-zero solution v ∈ Zs

2.
Notice: usually s = r + 10 is enough. So we do not need to care
much about this point.

(2016-01-25) 199+38

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

Dixon’s Quadratic Sieve Method

Solving: Once v is found, we interpret v ∈ {0, 1}s ⊂ Zs and
constuct x =

∏
xvii and ej =

∑
vi · ej(xi). Now we have a relation

x2 = qe00 qe11 . . . q
er−1

r−1 in ZN .

But since v was a solution of R · v = 0 in Zs
2

now all exponents ej are even!

Thus put y = q
e0
2
0 q

e1
2
1 . . . q

er−1
2

r−1 and find

x2 = y2.

Heuristically, with a probability of at least 1
2 we now have x 6= ±y

and thus obtain a factor of N : gcd(x− y,N).

(2016-01-25) 200+37

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

Dixon’s Quadratic Sieve Method

Runtime

The two main ingredients are relation finding and linear algebra.

◮ Linear algebra: O
(
r3
)
.

◮ Relation finding: (r + 10) · 1

prob (x good)
· O
(
r · κ2

)
.

Here, x is good iff x2 remN factors over the factor base Q.
Obviously, relations are easier to find if Q is larger. But then r is
larger and so linear algebra is more difficult.

Balancing yields the heuristic, expected runtime

2(c+o(1))κ
1
2 (log2 κ)

1
2 .

Warning: The o (1) term hides any polynomial factor!
(2016-01-25) 201+36

Factoring and Computing Discrete Logarithms:
Algorithms for Factoring

More and summary

As usual: the number N has κ bits and smallest prime factor p.

Algorithm runtime

Trial division O∼
(
2

κ
2

)
⊂ L1, 1

2
(κ)

Pollard’s p− 1 O∼
(
2

κ
3

)
but. . .

Pollard ̺ O∼
(√

p
)
⊂ L1, 1

4
(κ)

Dixon’s random squares L 1
2
,
√
2(κ)

Lenstra’s elliptic curve method (ECM) L 1
2
,
√
2(log2 p) ⊂ L 1

2
,1(κ)

General number field sieve (GNFS) L 1
3
, 3
√

64
9

(κ)

Shor’s quantum factoring poly(κ) = L0,O(1)(κ)

Here, Lε,c(κ) = 2(c+o(1))κε log1−ε
2

κ,
√
2 = 1.41 , 3

√

64
9

= 1.92 .

(2016-01-25) 202+35

Factoring and Computing Discrete Logarithms:
Discrete logarithm is hard?

Say GenGroup on 1κ outputs a triple (G, g, q) with a group G and
an element g ∈ G of order q.

Discrete logarithm experiment relative GenGroup

Input: 1κ.
Output: ACCEPT or REJECT.

◮ Choose parameters (G, g, q) ← GenGroup(1κ).
◮ Choose h ∈ 〈g〉 =

{
1, g, g2, . . . , gq−1

}
.

◮ Call the player A with input (G, g, q), h and expect x ∈ Zq.
◮ If gx = h then ACCEPT else REJECT.

Call discrete logarithm hard relative GenGroup iff each probabilistic
polynomial-time attacker A has at most negligible success.

(2016-01-25) 203+34

Factoring and Computing Discrete Logarithms:
Algorithms for Computing Discrete Logarithms

Shanks’ (1971) Baby-Step Giant-Step Algorithm

Idea: Write x = x1b+ x0 with b = 2⌈κ2 ⌉ and 0 ≤ x1, x0 < b. Solve
gx = h as follows: rearrange it as

gbx1 = h(g−1)x0 .

Then construct two lists, one for each side of the equation, sort
them and find the collision.

(2016-01-25) 204+33

Factoring and Computing Discrete Logarithms:
Algorithms for Computing Discrete Logarithms

Shanks’ Baby-Step Giant-Step Algorithm

Baby-Step Giant-Step

Input: G, g, q.
Output: x ∈ Zq with gx = h.

◮ b←
⌈√

q
⌉
.

◮ For x1 ∈ {0, . . . , b− 1} add (gbx1 , x1) to a list L0.
◮ Sort the list L0 wrt. the group element gbx1 .
◮ For x0 ∈ {0, . . . , b− 1} do

◮ Compute s← h(g−1)x0 .
◮ Find s is on the list L0. If s = gbx1 then return x1b+ x0.

◮ Never get here.

Runtime: Deterministic O
(
2

κ
2 κ
)

operations in G.

(2016-01-25) 205+32

Factoring and Computing Discrete Logarithms:
Algorithms for Computing Discrete Logarithms

Pollard’s (1978) ̺ Algorithm

Same as Pollard ̺ for factoring, only pick a, b←− Zq, compute x0 ← [gahb, a, b]
and proceed with

F :

G× Zq × Zq −→ G× Zq × Zq,

[x, a, b] 7−→

[g · x, a+ 1, b], x ∈ G0,

[h · x, a, b+ 1], x ∈ G1,

[x2, 2a, 2b], x ∈ G2,

for some partition G = G0 ∪̇G1 ∪̇G2. That partition may be based on some
bits of the element coding unrelated to the group structure. Given a collision, ie.
xi = [gahb, a, b] and xj = [ga

′
hb

′
, a′, b′] with gahb = ga

′
hb

′
. Rewrite this

hb
′−b = ga−a

′
. If b′ − b is invertible in Zq then we obtain

h = g
a−a′

b′−b .

Runtime: Heuristic, expected O∼
(
2

κ
2

)
operations in G.

(2016-01-25) 206+31

Factoring and Computing Discrete Logarithms:
Algorithms for Computing Discrete Logarithms

The Pohlig & Hellman (1978) Algorithm
Idea: In case q is not prime, say q = q′ · pf with p prime, f ≥ 1, we
can find xmod pf faster: If h = gx then solve

hq
′
=
(
gq

′
)x

determines x modulo pf .

Notice: ord
(
gq

′
)
= q

gcd(q,q′) .

Iterate: If q = q′′ · pe with p ∤ q′′ then use the previous with e = 1
to find xmod p, then with e = 2 to find xmod p2, then . . . , until
you have xmod pe. Each of these is a discrete logarithm problem

with basis g
q

p whose order is p only.
CRT: Do this for all prime divisors and put the results together
with the Chinese remainder theorem.
. . . :

(2016-01-25) 207+30

Factoring and Computing Discrete Logarithms:
Algorithms for Computing Discrete Logarithms

The Index Calculus Method (Kraitchik 1922, Merkle

1977, Adleman 1979)

In Z×p we can again use that this group is closely related to the ring
of integers with its unique factorization.
Relation finding: Pick x←− Zq and try to write

gx = q
e0(x)
0 . . . q

er−1(x)
r−1 in Z×p

over some fixed factor base Q = {q0, . . . , qr−1}.
Linear algebra: Solve the exponent system

R · v = X over Zq

where R’s rows are e0(x), . . . , er(x) and X consists of the various
x to obtain the discrete logartihms of the factor base: qi = gvi .

(2016-01-25) 208+29

Factoring and Computing Discrete Logarithms:
Algorithms for Computing Discrete Logarithms

The Index Calculus Method

Solving: Pick x←− Zq and try to write

hgx = pf00 . . . p
fr−1

r−1 .

On success obtain the wanted discrete logarithm

h = g−x+v0f0+...vr−1fr−1 .

Runtime: L 1
2
,?(κ).

Precomputation may result in a very fast Solving!

(2016-01-25) 209+28

Factoring and Computing Discrete Logarithms:
Algorithms for Computing Discrete Logarithms

More and summary
As usual: the number N has κ bits and smallest prime factor p.

Algorithm runtime

Shanks’ Baby-step Giant-step O∼
(√

q
)
⊂ L1, 1

2
(κ)

Pollard ̺ O∼
(√

q
)
⊂ L1, 1

2
(κ)

Pohlig & Hellman O∼
(√

P∞(q)
)
⊂ L1, 1

2
(κ)

Index calculus L 1
2
,
√
2(κ)

Number field sieve (NFS) L
1
3
, 3
√

64
9

(κ)

Joux’s (2013) algorithm for very
small characteristics

L 1
4
+ε,c(κ)

Shor’s quantum algorithm poly(κ) = L0,O(1)(κ)

Here, Lε,c(κ) = 2(c+o(1))κε log1−ε
2

κ,
√
2 = 1.41 , 3

√

64
9

= 1.92 .

(2016-01-25) 210+27

Factoring and Computing Discrete Logarithms:
Recommended Key Lengths

. . . from NIST (2012)

Factoring DL

effective key
length

RSA modulus
length

order q sub-
group of Z×

p

Elliptic curve
group order q

112 2 048 p: 2 048, q: 224 224
128 3 072 p: 3 072, q: 256 256
192 7 680 p: 7 680, q: 384 384
256 15 360 p: 15 360, q: 512 512

Compare http://www.keylength.com/.

(2016-01-25) 211+26

http://www.keylength.com/

Section 12 Overview

Symmetric-Key Management and Public-Key Revolution

Public-Key Encryption I

Number Theory

Factoring and Computing Discrete Logarithms

Public-Key Encryption, II
RSA

*Implementation issues
Necessary conditions for security of RSA
*Attacks on misuses

ElGamal Encryption
Special features of RSA and ElGamal encryption
Security for public-key encryption
*Padded RSA

PKCS#1 v1.5
OAEP / PKCS#1 v1.20

Public-Key Encryption — An Overview
Definitions
Hybrid Encryption and the KEM/DEM Paradigm
*Trapdoor Permutations

*Additional Public-Key Encryption Schemes

Digital Signature Schemes

*Public-Key Cryptosystems in the Random Oracle Model

(2016-01-25) 212+25

Public-Key Encryption, II:
RSA

*Implementation issues

◮ A choice has to be made for the prime generation step.

◮ In practice, we have to associate certain bitstrings {0, 1}∗ with
elements of the ring ZN .

◮ Notice that encryption is faster if e is tiny.
◮ Sometimes the choice of e is restricted to a few candidates.
◮ Alternatively, e may be prescribed, say e = 24 + 1, and the

choice of p, q is restricted such that gcd(e, L) = 1.
◮ And decryption is faster if d is tiny.

◮ Actually, d must have κ
2 unpredictable bits to prevent certain

attacks.

◮ The Chinese Remainder Theorem may be used to speed up decryption.
Problems: Side channel, fault attack.

◮ . . .

(2016-02-01) 214+23

Public-Key Encryption, II:
RSA

Necessary conditions for security of RSA

◮ Factorization is difficult: (N, e, c) 7→ (p, q).

⇐ Having (p, q), we also have L = (p− 1)(q − 1).
⇒ Notice that (x− p)(x− q) = x2 − (N + 1− L) · x+N .

Given L we have this polynomial and thus also its roots.

◮ Determining L is difficult: (N, e, c) 7→ L.

⇐ Given L it is easy to find d.
⇒ Notice that L divides e · d− 1 in Z.

Given two pairs (e0, d0) and (e1, d1) we obtain L from
K := gcd(e0d0 − 1, e1d1 − 1), since K is probably only a few bits longer
than L. Given a single pair (e, d) it’s complicated but possible.

◮ Determining d is difficult: (N, e, c) 7→ d = 1
e

in ZL.

⇐ Given d = 1
e

in ZL it is easy to decrypt.

◮ Decryption is difficult: (N, e, c) 7→ m = cd in ZN . (OW-POA.)

⇐ . . .

◮ Indistinguishability (IND-POA or better)?

(2016-02-01) 215+22

Public-Key Encryption, II:
RSA

*Attacks on misuses

◮ Encrypting short messages using tiny e.
Insecure: m too far from uniform!

◮ Broadcasting using tiny e.
Slight misuse: fixed, tiny e, same message!

◮ Quadratic speed up recovering small m.
Insecure: m too far from uniform!

◮ Common modulus attacks.
Misuse: N not individually chosen!
Problems: Company knows all keys. N can be most probably
be factored by any two employees. Decryption easy.

(2016-02-01) 216+21

Public-Key Encryption, II:
ElGamal Encryption

ElGamal (1985) Encryption

KeyGen

Input: 1κ.
Output: Parameters π = (G, g, q), a private key a ∈ Zq and a

public key A ∈ G.

◮ Run (G, g, q) ← GenGroup(1κ).
◮ Pick a←− Zq, compute A← ga in G.

Enc

Input: (π,A), m ∈ G.
Output: c ∈ G×G.

◮ Pick t←− Zq.
◮ c← (gt,m · At) in G×G.

Dec

Input: (π, a), c ∈ G×G.
Output: m′ ∈ G.

◮ m′ ← c−a0 · c1 in G.

(2016-01-25) 217+20

Public-Key Encryption, II:
Special features of RSA and ElGamal encryption

◮ RSA is deterministic.

◮ RSA is homomorphic:

Dec(N,d)

(
Enc(N,e)(m0) · Enc(N,e)(m1)

)

= Dec(N,d) (m
e
0 ·me

1)

= Dec(N,d) ((m0 ·m1)
e) = m0 ·m1.

◮ ElGamal encryption is probabilistic.

◮ ElGamal encryption is homomorphic:

Dec(π,a)
(
Enc(π,A)(m0) · Enc(π,A)(m1)

)

= Dec(π,a)
(
(gt0 ,m0 · At0) · (gt1 ,m1 · At1)

)

= Dec(π,a)
(
(gt0+t1 ,m0 ·m1 · At0+t1)

)
= m0 ·m1.

(2016-01-25) 218+19

Public-Key Encryption, II:
Security for public-key encryption

Indistinguishability game GIND-CPA

◮ Pick key pair (K, k)← KeyGen(1κ).
◮ Choose a hidden bit h←− {0, 1}

uniformly random.
◮ Prepare an encryption oracle OEnc.

When called with m ∈ M the oracle
returns c← EncK(m).

◮ Prepare a one-time oracle OTest.
When called with m∗0,m

∗
1 ∈ M the

oracle returns c∗ ← EncK(m∗h).
◮ Call the attacker A with input 1κ,

public key K and the oracles OEnc

and OTest. Await a guess h′ ∈ {0, 1}.
◮ If h = h′ then ACCEPT

else REJECT.

Definition

A public-key encryption scheme Π is
IND-CPA secure
iff
for each probabilistic polynomial-time
attacker A the advantage

advIND-CPA(A) =
∣∣∣∣prob

(
GIND-CPA(A) = ACCEPT

)
− 1

2

∣∣∣∣

is negligible.

Here, IND-POA = IND-CPA.

(2016-02-01) 219+18

Public-Key Encryption, II:
Security for public-key encryption

Is RSA IND-CPA secure?

◮ No, since RSA is deterministic. (Construct attacker!)

Is RSA IND-POA secure?

◮ No, for public-key encryption IND-POA = IND-CPA.

Is RSA OW-CPA secure?

◮ Yes, if(f) the RSA problem is hard, which requires essentially
that RSA encryption is a one-way function.

Is ElGamal IND-CPA secure?

◮ Yes, if(f) DDH is hard relative to GenGroup(·).
Is ElGamal IND-CCA secure?

Wait, think about GIND-CCA first. . .Well, add ODec to GIND-CPA.
◮ No, because it’s homomorphic. (Construct attacker!)

(2016-02-01) 220+17

Public-Key Encryption, II:
Security for public-key encryption

Indistinguishability game GIND-CCA

◮ Pick key pair (K, k)← KeyGen(1κ).
◮ Choose a hidden bit h←− {0, 1} uniformly

random.
◮ Prepare an encryption oracle OEnc. When called

with m ∈ M the oracle returns c← EncK(m).
◮ Prepare a decryption oracle ODec. When called

with c ∈ C the oracle returns m← Deck(c).
◮ Prepare a one-time oracle OTest. When called

with m∗0,m
∗
1 ∈ M the oracle returns

c∗ ← EncK(m∗h).
◮ Call the attacker A with input 1κ and the oracles
OEnc, ODec and OTest. Await a guess h′ ∈ {0, 1}.

◮ If the decryption oracle has even been called with
the (first) output c∗ of the test oracle as input
then randomly ACCEPT or REJECT.

◮ If h = h′ then ACCEPT else REJECT.

Definition

A public-key encryption scheme Π
is IND-CCA secure
iff
for each probabilistic
polynomial-time attacker A the
advantage

advIND-CCA(A) =
∣∣∣∣prob

(
GIND-CCA(A) = ACCEPT

)
− 1

2

∣∣∣∣

is negligible.

(2016-02-01) 221+16

Public-Key Encryption, II:
*Padded RSA

IND-CCA security with short plain texts?

How to modify RSA?
Well, if the scheme prevents the attacker to use the decryption
oracle on messages not produced by the encryption protocol then
the attacker cannot use a modified version of the test cipher text c∗.

(2016-02-01) 222+15

Public-Key Encryption, II:
*Padded RSA

PKCS#1 v1.5

Idea: use some random padding before encryption.

Namely, given 28(k−1) ≤ N < 28k preprocess m ∈ {0, 1}8D with no
zero byte as

m̃ = 00|02|r|00|m

with r ←− {0, 1}8(k−D−3).
However, this is not IND-CCA secure. Notice that the topmost bits
of a valid RSA plain text m̃ are known, namely 00|02. See
Bleichenbacher attack, RSA hard core bit.

(2016-02-01) 223+14

Public-Key Encryption, II:
*Padded RSA

OAEP / PKCS#1 v1.20

Provably provides IND-CCA security provided that the RSA
problem is hard.
⇒ Should be used instead of PKCS#1 v1.5.

Warning: Manger’s attack on PKCS#1 v1.20

In OAEP there are two error sources but only one error message. If
the implementation erroneously provides two different error
messages then Manger’s attack reveals the entire plaintext.

(2016-02-01) 224+13

Section 13 Overview

Symmetric-Key Management and Public-Key Revolution

Public-Key Encryption I

Number Theory

Factoring and Computing Discrete Logarithms

Public-Key Encryption, II

*Additional Public-Key Encryption Schemes
The Goldwasser-Micali Encryption Scheme
The Rabin Encryption Scheme
The Paillier Encryption Scheme

Digital Signature Schemes

*Public-Key Cryptosystems in the Random Oracle Model

225+12

Section 14 Overview

Symmetric-Key Management and Public-Key Revolution

Public-Key Encryption I

Number Theory

Factoring and Computing Discrete Logarithms

Public-Key Encryption, II

*Additional Public-Key Encryption Schemes

Digital Signature Schemes
First schemes

The blackbox picture (again)
The “Hash-and-Sign” Paradigm
RSA Signature
ElGamal (like) Signature Scheme

Digital Signatures — An Overview
Definitions
RSA Signatures
The “Hash-and-Sign” Paradigm
Lamport’s OneTime Signature Scheme
*Signatures from Collision-Resistant Hashing
ElGamal like Signatures and the DSS
Certificates and PKIs

*Public-Key Cryptosystems in the Random Oracle Model

(2016-02-01) 226+11

Digital Signature Schemes:
First schemes

The blackbox picture (again)

KeyGen

Sign Vrfy

1κ

m

{
TRUE

FALSE
s

(2016-02-01) 227+10

Digital Signature Schemes:
First schemes

The “Hash-and-Sign” Paradigm

For almost all schemes, the message is first hashed with a
‘cryptographically secure’ hash function h : {0, 1}∗ → D,
where D = {0, 1}κ, D = ZN or D = G as needed.

Extremes

◮ No hashing, ie. h(x) = x.

◮ Full-domain hash, ie. (almost) every element in D occurs as a
hash (with similar probability).

(2016-02-01) 228+9

Digital Signature Schemes:
First schemes

RSA Signature

Signing equation: h(m) = se in ZN .

KeyGen: exactly as in RSA.

Sign

Input: (N, d) ∈ N× N,
h(m) ∈ ZN .

Output: s ∈ ZN .

◮ s← h(m)d in ZN .

Verify

Input: (N, e) ∈ N×N,
m, s ∈ ZN .

Output: ACCEPT or
REJECT.

◮ If h(m) = se in ZN

then ACCEPT else
REJECT.

(2016-02-01) 229+8

Digital Signature Schemes:
First schemes

RSA Signature

The previous scheme is known as RSA-FDH provided the used hash
function h is a full domain hash function.

Theorem

If the RSA problem is hard then RSA-FDH is ‘secure’.

Notice that with h : ZN → ZN the identity the scheme is definitely
insecure.

(2016-02-01) 230+7

Digital Signature Schemes:
First schemes

ElGamal (like) Signature Scheme

Signing equation: AB∗
Bc = gh(m) in G with ∗ : G→ Zq nice.

KeyGen: exactly as in ElGamal encryption.

Sign

Input: (π, a), h(m) ∈ G.
Output: s ∈ G× Zq.

◮ Pick b←− Z×q .
◮ Compute B ← gb in G.
◮ Compute c ∈ Zq such

that aB∗ + bc = h(m).
◮ Return (B, c).

Verify

Input: (π,A), m ∈ G,
s ∈ G× Zq.

Output: ACCEPT or
REJECT.

◮ If AB∗
Bc = gh(m) in G

then ACCEPT else
REJECT.

(2016-02-01) 231+6

Digital Signature Schemes:
First schemes

ElGamal (like) Signature Scheme

Modification: Rewrite AB∗
Bc = gh(m) in G as

B =
(
gh(m)A−B

∗
)c−1

in G

and apply ∗ on both sides. Now, we can use the signature
(B∗, c) ∈ Zq × Zq instead of (B, c) ∈ G× Zq.

If G = Z×p this is much shorter in practice, compare the
recommended key lengths; for example, for 128-bit security using
q ∼ 2256 and p ∼ 23072 it’s only 512 bit instead of 3328 bit.

However, if G is an elliptic curve it doesn’t matter.

DSA or ECDSA: is an ElGamal like signature with this modification
and G = Z×p or G an elliptic curve, respectively.

(2016-02-01) 232+5

Digital Signature Schemes:
Certificates and PKIs

Certificate

A certificate is a signed electronic document with

◮ identification information, say a name, an email, an IP or a
URL,

◮ one or several public keys, possibly with usage indications.

Public-Key Infrastructure (PKI)

A public-key infrastructure (PKI) consists of many certificates with
the ultimate goal to grant authenticity of the final public keys.

(2016-02-01) 233+4

Digital Signature Schemes:
Certificates and PKIs

. . .

(2016-02-01) 234+3

Section 15 Overview

Symmetric-Key Management and Public-Key Revolution

Public-Key Encryption I

Number Theory

Factoring and Computing Discrete Logarithms

Public-Key Encryption, II

*Additional Public-Key Encryption Schemes

Digital Signature Schemes

*Public-Key Cryptosystems in the Random Oracle Model
235+2

Public-Key Cryptography:
Summary

◮ Diffie-Hellman and the public-key revolution.
◮ Key exchange, ROR-POA, DDH, not secure against active

attacker due to MitM.

◮ Elementary number theory.
◮ Modular arithmetic. Extended Euclidean Algorithm.

◮ Elementary group theory.
◮ Square-and-multipliy.

◮ RSA encryption. ElGamal encryption.

◮ IND-CPA, IND-CCA for public-key encryption.

◮ *Hybrid encryption, KEM/DEM paradigm.

◮ RSA signatures . . . RSA-FDH,
ElGamal signatures . . . ECDSA.

◮ *EUF-CMA for public-key signatures.

◮ *Certificates, PKI.

236+1

Part III

Summer 2016

TAoC: The art of cryptography: secure internet & e-voting
(4+2)

◮ Secure channels and their security.
◮ IPsec, TLS, SSH, *EMV, *OTR and Open Whisper, . . .

◮ e-Voting, ie. remote electronic elections, anonymous channels.

SATiC: Seminar Advanced Topics in Cryptography (2)

Current research.

Master theses

Any time . . . just ask me. Some topics:
https://cosec.bit.uni-bonn.de/students/theses/.

237+0

https://cosec.bit.uni-bonn.de/students/theses/

	Organizational
	Webpage & mailing list
	Time & place
	Hand-in & exam

	Introduction
	Historical examples
	Kerckhoffs' principle
	Black-box view of encryption
	Basic principles of modern cryptography
	Attack scenarios

	Perfectly Secret Encryption
	The One-Time Pad (Vernam's cipher, 1917)
	Perfect secrecy

	Symmetric-Key Cryptography
	Symmetric-Key Encryption and Pseudorandomness, I
	Computational Approach
	Defining Computationally-Secure Encryption (IND-POA)
	Pseudorandomness
	Constructing Secure Encryption Schemes

	Practical Constructions of Block Ciphers
	Substitution-Permutation Networks
	AES
	Feistel Networks
	DES
	Increasing the Key Length of a Block Cipher
	Brief look: differential and linear cryptanalysis
	Summary
	Modes of operation

	Symmetric-Key Encryption and Pseudorandomness, II
	Security Against Chosen-Plaintext Attacks (IND-CPA)
	Constructing CPA-secure Encryption Schemes
	Security Against Chosen-Ciphertext Attacks (IND-CCA)

	MACs and Collision-Resistant Hash Functions
	MACs — Definitions
	Constructing Secure MACs
	CBC-MAC
	*Collision-Resistant Hash Functions
	*NMAC and HMAC
	Constructing CCA-Secure Encryption Schemes
	Obtaining Privacy and Message Authentication
	AEAD, LHAE, …

	Public-Key Cryptography
	Symmetric-Key Management and Public-Key Revolution
	Limitations of Symmetric-Key Cryptography
	A Partial Solution — Key Distribution Centers
	Diffie-Hellman Key Exchange
	Real-or-random security
	Security and Insecurity of Diffie-Hellman Key Exchange
	The Public-Key Revolution

	Public-Key Encryption I
	RSA

	Number Theory
	Preliminaries
	Modular arithmetic
	Groups
	RSA, revisited
	Generate random primes
	RSA, revisited

	Factoring and Computing Discrete Logarithms
	Factoring is hard?
	Algorithms for Factoring
	Discrete logarithm is hard?
	Algorithms for Computing Discrete Logarithms
	Recommended Key Lengths

	Public-Key Encryption, II
	RSA
	ElGamal Encryption
	Special features of RSA and ElGamal encryption
	Security for public-key encryption
	*Padded RSA
	Public-Key Encryption — An Overview
	Definitions
	Hybrid Encryption and the KEM/DEM Paradigm
	*Trapdoor Permutations

	*Additional Public-Key Encryption Schemes
	The Goldwasser-Micali Encryption Scheme
	The Rabin Encryption Scheme
	The Paillier Encryption Scheme

	Digital Signature Schemes
	First schemes
	Digital Signatures — An Overview
	Definitions
	RSA Signatures
	The ``Hash-and-Sign'' Paradigm
	Lamport's OneTime Signature Scheme
	*Signatures from Collision-Resistant Hashing
	ElGamal like Signatures and the DSS
	Certificates and PKIs

	*Public-Key Cryptosystems in the Random Oracle Model
	The Random Oracle Methodology
	Public-Key Encryption in the ROM
	Signatures in the ROM

	Summer 2016

