10. Exercise sheet
Hand in solutions until Friday, 20 January 2017, 12:00 (noon)

Exercise 10.1 (Cleptography). (12+3 points)

Someone has replaced the key generation with the following:

Modified Key Generation.

Input: Security parameter $\kappa \in 8\mathbb{N}$.

1. Fix a pseudo random generator with seed s for use wherever the subse-
 quent algorithm uses random bits.
2. Pick $p, q_0 \leftarrow \mathbb{P}$ with $2^{\kappa-1} \leq p \cdot q_0 < 2^\kappa$ and . . .
3. Compute $N_0 \leftarrow p \cdot q_0$.
4. Compute an encryption of s for Eve with any encryption algorithm (for
 example a one-time pad), just ensuring that $\text{Enc}_Eve(s) \in \{0, 1\}^\kappa$.
5. Take the bit pattern of N_0 and replace the bits $7\kappa 8^{-1} . . . 5\kappa 8$ with $\text{Enc}_Eve(s)$.
 The result is called N_1.
6. Compute $q := \text{nextprime}\left(\frac{N_0}{p}\right)$.
7. Compute $N \leftarrow p \cdot q$.
8. Compute $L \leftarrow (p - 1) \cdot (q - 1)$.
9. Pick $e, d \in \mathbb{N}$ with $e \cdot d = 1$ in \mathbb{Z}_L.
10. Replace this algorithm in the library by the original one.

We may assume $q \leq \frac{N_1}{p} + c\kappa$ for some small c with high probability. This is
 reasonable.

(i) Prove that $0 < N - N_1 < 2^{\kappa+\log_2 \kappa+\log_2 c+7}$.

Assume that $\log_2 \kappa + \log_2 c + 7 < \frac{7}{8}$.

(ii) Conclude that N and N_1 coincide in their bits $\frac{7\kappa 8}{8} - 1 . . . \frac{5\kappa 8}{8}$ assuming that
 no carry to bit $\frac{5\kappa 8}{8}$ occurs when adding N_1 and $N - N_1$.

(iii) Explain what Eve can do based on the public key.

(iv) Can this modification be detected?

(v) Conclude that it is vital to somehow document/prove the provenience
 of the key pair.

Draw consequences. (Behaviour? NIZK?)
Exercise 10.2 (Primality Testing). (10+10 points)

In this exercise we put hands on the primality tests discussed in the lecture.

(i) Implement the Miller Rabin test in a programming language of your choice.

Hint: At http://www.sagemath.org/ you can use SageMath online or download it (native on Linux, or in a VirtualBox on Windows) for local use. Sage is python-based.

(ii) Implement the Fermat test in a programming language of your choice, ie. take the Miller Rabin test and omit the line leading to the answer: “composite” (with factor).

Now, let’s run it! Execute the Miller Rabin test with

(iii) $N = 41, x = 2$.

(iv) $N = 57, x = 37$.

(v) $N = 1105, x = 47$.

(vi) $N = 1105, x = 2$.

With our implementation running, we can now perform several experiments.

(vii) Compute the number of Fermat liars for $N = 35$, ie. the number of choices $x \in \mathbb{Z}_N$ for which the Fermat test returns N “maybe prime”.

(viii) Compute the number of Miller Rabin liars for $N = 35$, ie. the number of choices $x \in \mathbb{Z}_N$ for which the Miller Rabin test returns N “maybe prime”.

(ix) Do the same for $N = 561$.

(x) Perform more experiments and interpret the results.